
Friedrich-Alexander-Universität
Erlangen-Nürnberg

Faculty of Engineering - Chair of Applied Cryptograpy
Master Thesis in Mechatronics

Security of Blind Conditional
Signatures Revisited

Fabian Jost

First Advisor: Prof. Dr. Dominique Schröder
Second Advisor: Paul Gerhart

Erlangen, 23.09.2024

Abstract
Coin-mixing services allow anonymous blockchain transactions by unlinking the

sender and receiver. In a quest to remove trust from the mixing service and improve
interoperability and efficiency, Tairi et al. [TMM21] proposed the coin-mixing protocol
A2L based on atomic asynchronous locks. Glaeser et al. [GMM+22] revised the
A2L protocol and introduced the notion of blind conditional signatures (BCS) as the
cryptographic core for coin-mixing services, alongside their security definitions. They
further gave an improved construction for a secure BCS protocol called A2L+. In their
recent work on adaptor signatures, Gerhart et al. [GSST24] exposed a security gap in
the A2L+ protocol that allows breaking unforgeability.

In this work, we first revisit the current security definitions of BCS and pinpoint their
weaknesses. Building on this analysis, we introduce the enhanced security property of
selective-failure blindness and present a provably secure construction in the game-based
setting. Our main contributions in detail are:

• Security properties: We review the current security properties of blind condi-
tional signatures according to Glaeser et al. [GMM+22] in detail and highlight
gaps based on system assumptions that do not always hold and render the
scheme insecure under various settings. We propose the strictly stronger security
notion of selective-failure blindness based on the work of Fischlin et al. [FS09]
that investigated blindness under aborts. Selective-failure blindness ensures
that blindness holds even in case of adversarial aborts during the puzzle solver
execution. This is an essential security property for blind signature schemes, as
it prevents information leakage that could occur based on aborts.

• Secure Construction: As the attack by Gerhart et al. [GSST24] showed,
the unforgeability security property of the A2L+ construction by Glaeser et al.
[GMM+22] can be broken since the adaptor signature definitions by Aumayr et
al. [AEE+21] allow creating a scheme with malleable pre-signatures. We give a
revised construction that closes this security gap and protects the sender against
collusion between the Hub and Bob. Finally, we prove the security of our revised
protocol in the game-based setting.

iv

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Hard Relations . 3
2.2 One-More Discrete Logarithm Problem 3
2.3 Linear-Only Homomorphic Encryption 4
2.4 Non-Interactive Zero-Knowledge Proof 4
2.5 Randomizable Puzzle . 6
2.6 Commitment Scheme . 7
2.7 Digital Signatures . 8
2.8 Adaptor Signatures . 10

2.8.1 Definition and Functionality . 11
2.8.2 Security Properties of Adaptor Signatures 12

3 Coin-Mixing 17
3.1 General Functionality . 17
3.2 Synchronization Puzzles . 18
3.3 A2L+ . 20

3.3.1 System Assumptions . 20
3.3.2 Achieving Unlinkability . 21
3.3.3 Registration Protocol . 22

4 Definition and Current Security Notions of Blind Conditional Signatures 24
4.1 Definition . 24
4.2 Blindness . 25
4.3 Unlockability . 27
4.4 Unforgeability . 28
4.5 One-More CCA-A2L Security . 30

5 Problems with Current Security Notions 32
5.1 Problems with Current Blindness Definition 32

5.1.1 Blindness under Aborts . 33
5.1.2 Blindness Between Sender and Receiving Parties 33
5.1.3 Blindness Between Sending Parties and Receiver 34

5.2 Problems with Current Unforgeability Definition 34
5.3 Limitations of Payment Channel Setup 36

v

6 Enhanced Security Definitions 37
6.1 Selective-Failure Blindness . 37

7 Blind Conditional Signatures Construction 40
7.1 Puzzle Promise Protocol . 41
7.2 Puzzle Solver Protocol . 42
7.3 Open Algorithm . 43

8 Security Analysis 44
8.1 Selective-Failure Blindness . 44
8.2 Unlockability . 50
8.3 Unforgeability . 57

9 Conclusion 65

Bibliography 67

vi

1 Introduction
Privacy remains an ongoing challenge for most blockchains due to their inherently
transparent nature. While the protocols themselves are trustless, any observer can link
transactions to each other and therefore learn where the money flows. To combat this
a host of privacy-preserving strategies surfaced, one being coin-mixers.

The basic idea behind coin-mixing is rather simple, namely, unlinking the sender
and receiver of a transaction by combining multiple transactions of different users.
More pressing is probably the question of why this is beneficial and necessary. During
the advent of Bitcoin, it was perceived that blockchain transactions were more or less
anonymous. All we know about the sender and receiver are their public addresses,
which are large hex numbers. Unfortunately, it is not hard to draw a connection
between the public address and the user behind it. Simply buying new bitcoins with a
credit card will reveal the real-world identity. In a quest to remove the link between
real-world users and blockchain public addresses, coin-mixing services have emerged.
These protocols offer the ability to transfer the linked coins to a new yet unlinked
address and therefore enable anonymity.

Coin-mixing protocols combine numerous transactions to obfuscate the sender and
receiver of two transactions. While there are several techniques to achieve this, many of
the modern protocols are built around the concept of synchronization puzzles proposed
by Heilman et al. [HAB+17]. Synchronization puzzles are composed of a three-party
protocol consisting of the sender Alice, the Hub, who acts as the tumbler, and the
receiver Bob. Furthermore, most coin-mixing services run in different phases, consisting
of a deposit and withdrawal phase. In the deposit phase, numerous users send a
transaction to the Hub with an embedded challenge. Later, during the withdrawal
phase, anyone knowing the solution to a challenge can withdraw the corresponding
coins to a new address.

To achieve wide-ranging compatibility, remove trust from the Hub, and enhance
performance, Tairi et al. [TMM21] proposed the A2L protocol, which is based on
the concepts of synchronization puzzles and leverages adaptor signatures according
to Aumayr et al. [AEE+21] to embed the challenges inside the transaction messages.
Glaeser et al. [GMM+22] later refined the A2L protocol and presented the improved
A2L+ protocol. Additionally, they introduced blind conditional signatures (BCS) as
the cryptographic core for coin-mixing services. In their recent work on dichotomic
signatures, Gerhart et al. [GSST24] showed how an adaptor signature with malleable
pre-signatures can be constructed due to flaws in the definitions of adaptor signatures
by Aumayr et al. [AEE+21], to break unforgeability of the A2L+ protocol.

In this thesis, we will first explain the functionality of coin-mixing services and
synchronization puzzles in detail in Chapter 3. Chapter 4 reviews the security properties

1

1 Introduction

and definitions of blind conditional signatures. We will then restate the attack on the
A2L+ protocol, give revised security definitions, and propose a refined, provably secure
construction of A2L+ in the game-based setting. In detail, the contributions of this
work are summarized below:

Security definitions. We analyze the definitions of blind conditional signatures by
Glaeser et al. [GMM+22] in detail and show that blindness in the case of aborts
is not adequately handled therein. To combat this, we propose a strictly stronger
security definition of selective-failure blindness according to Fischlin et al. [FS09].
Selective-failure blindness ensures that blindness holds even in case of adversarial
aborts.

Construction. We revisit the attack on A2L+ by Gerhart et al. [GSST24] and
reconstruct the adversary and their adaptor signature scheme with malleable pre-
signatures. Furthermore, we state the improved security properties according to
Gerhart et al. [GSST24] that we require our adaptor signature scheme to fulfill. With
that in place, we give a revised construction of A2L+ that additionally ensures blindness
even in case of collusion between the Hub and Bob. Finally, we prove the security of
our construction in the game-based setting and therefore show that the A2L+ scheme
is secure with respect to the system assumptions.

2

2 Preliminaries
We denote by λ ∈ N the security parameter and by x ←$ X the uniform sampling
of x from the set X. y ← A(x; r) denotes a probabilistic polynomial time algorithm
(PPT) that, on input x and randomness r ←$ {0, 1}∗, outputs y. The randomness is
often omitted and only explicitly mentioned when required. We denote x := A(y) a
deterministic polynomial time algorithm (DPT). A function negl : N→ R is negligible
in n if for every positive integer k ∈ N, there exists a threshold n0 ∈ N s.t. for all
n ≥ n0 it holds that |negl(n)| ≤ n−k, meaning it vanishes faster than any polynomial.
The following preliminaries are inspired by [AEE+21, GMM+22].

2.1 Hard Relations
We define a relation Rel : DS ×DW → {0, 1} as a mapping, where DS is the space of
statements and DW is the space of witnesses. Let (Y, y) be a statement/witness pair,
with Y ∈ DS and y ∈ DW. The relation Rel maps (Y, y) to 1 if and only if y is a valid wit-
ness for the statement Y. The language LRel is denoted as LRel := {Y |∃y : (Y, y) ∈ Rel}.
The relation is hard if it is computationally infeasible on input a statement Y to
compute a valid witness y. Furthermore, verifying the validity of a statement/witness
pair and sampling a new pair should be computationally easy. The PPT sampling
algorithm is denoted as GenR(1λ) and outputs a random pair (Y, y) ∈ Rel.

In this work, we rely on hard relations based on the discrete logarithm problem,
which is believed to be hard in polynomial time. We therefore define the corresponding
hard relation as RelDL with respect to the language LDL := {Y |∃y ∈ Zp, Y = gy},
where g is a generator for a group G of prime order p.

2.2 One-More Discrete Logarithm Problem
The one-more discrete logarithm problem (OMDL) extends the classic discrete logarithm
problem. In the traditional problem, the goal is to find the exponent x given a generator
g and an element h in a finite group G, such that gx = h. In the OMDL problem, the
adversary is additionally given q + 1 random elements h1, ..., hq+1 ∈ G and equipped
with a discrete logarithm oracle. The goal is to find q + 1 discrete logarithms of
h1, ..., hq+1 by only querying the oracle q times. We recall the one-more discrete
logarithm assumption according to [BFP21, BNPS03] in Definition 1.

3

2 Preliminaries

Definition 1 (One-More Discrete Logarithm (OMDL) Assumption [BFP21, BNPS03]).
Let G be a uniformly sampled cyclic group of prime order p and g a random generator
of G. The one-more discrete logarithm assumption states that for all λ ∈ N there
exists a negligible function negl(λ) such that for all PPT adversaries A making at most
q = poly(λ) queries to DL(·), it holds that

Pr

 ∀i : xi = ri

∣∣∣∣∣∣∣
r1, . . . , rq+1 ←$ Zp;
∀i ∈ [q + 1], hi ← gri

{xi}i∈[q+1] ← ADL(·)(h1, . . . , hq+1)

 ≤ negl(λ),

where the DL(·) oracle takes as input an element h ∈ G and returns x such that
h = gx.

2.3 Linear-Only Homomorphic Encryption
Definition 2 (Linear-Only Homomorphic Encryption [TCC 204]). Let ΠE := (KGen,
Enc, Dec) be a IND-CPA-secure [GM84] public key encryption scheme with message
space M and the following three algorithms:

• (ek, dk)← KGen(1λ). The key generation algorithm is a PPT algorithm that, on
input the security parameter λ, outputs an encryption key ek and a decryption
key dk.

• c← Enc(ek, m). The encryption algorithm takes as input a public encryption key
ek and a plaintext message m ∈M and outputs a ciphertext c.

• m← Dec(dk, c). The decryption algorithm takes as input a private decryption
key dk and a ciphertext c and outputs a plaintext message m.

We say that ΠE is linearly homomorphic if there exists some efficiently computable
operation ◦ such that for every m0, m1 ∈M it holds that Enc(ek, m0) ◦ Enc(ek, m1) =
Enc(ek, m0 + m1).

The linear-only encryption (LOE) model introduced by [Gro04] is an idealized model
in which the adversary is restricted to performing only linear operations on ciphertexts
via oracle access instead of their corresponding algorithms. This restriction simplifies
the analysis of the A2L+ scheme by limiting the adversary to linear operations, ensuring
that properties such as perfect ciphertext randomizability are preserved, while still
capturing essential adversarial behavior.

2.4 Non-Interactive Zero-Knowledge Proof
Let Rel be a hard relation with corresponding language LRel according to Section 2.1. A
non-interactive zero-knowledge proof system (NIZK) for the relation Rel allows a party
that we call prover to convince a verifier that a statement Y is true without revealing

4

2.4 Non-Interactive Zero-Knowledge Proof

any other information about the underlying witness or any other secret data used in
the proof. In contrast to an interactive zero-knowledge proof system, a NIZK requires
no interaction between the verifier and prover to generate a proof. Looking ahead to
our construction, we specifically require the non-interactive property, as we need to
prove to another party that a ciphertext encrypts a valid witness to an NP statement
under an encryption key ek. We define the language used in the A2L+ NIZK proof
system as LNIZK := {(ek, Y, c)|∃y ∈ Zp : gy = Y ∧ c = ΠE.Enc(ek, y)}. Moreover, in this
work, we rely on a randomizable NIZK proof system to ensure that the generated proof
can be randomized, such that it verifies a randomized ciphertext also encrypts a valid
witness to an NP statement under the same encryption key ek used in the original
proof. Belenkiy et al. [BCC+09] first formally defined the notion of a randomizable
NIZK and gave a construction based on Groth-Sahai proofs [GS08]. We build upon
the advancements presented by Ananth et al. [ADKL19] in their framework for fully
homomorphic NIZK proof systems.

Definition 3 (Randomizable Non-Interactive Zero-Knowledge Proof [ADKL19]). Let
Rel : DS ×DW → {0, 1} be a hard relation with corresponding language LRel. A NIZK
proof system consists of the following four algorithms:

• (crs, td) ← Setup(1λ). The setup algorithm is a PPT algorithm that, on input the
security parameter λ, outputs a common reference string crs, used by both the
prover and verifier, and a trapdoor td.

• π ← P(crs, Y, y). The prove algorithm is a PPT algorithm that takes as input the
common reference string crs, a statement Y that the prover wishes to prove, and
a witness y. It outputs a proof π.

• {0, 1} := V(crs, Y, π). The verify algorithm is a DPT algorithm that takes as input
the common reference string crs, a statement Y , and a proof π. It outputs 1 if
the proof is correct and 0 otherwise.

• π′ ← Rand(crs, Y, π, r). The randomize algorithm is a PPT algorithm that takes
as input the common reference string crs, a statement Y , a proof π that the prover
wishes to randomize, and a randomization factor r. It outputs a randomized
proof π′.

A secure randomizable NIZK proof system needs to satisfy the following five proper-
ties:

• Perfect Completeness. The verifier will accept the proof if the proof π and the
statement Y are valid.

• Soundness. It is computationally infeasible to output a valid proof for a statement
Y /∈ LRel.

• Zero-Knowledge. There exists a simulator π′ ← Sim(td,Y) that can generate a
proof π′ without access to the witness y, that is computationally indistinguishable
from an honestly generated proof π ← P(crs, Y, y).

5

2 Preliminaries

• Secure. With the knowledge of the trapdoor td, a valid witness y to the statement
Y can be efficiently extracted.

• Perfect Randomizability. For any proof π, statement/witness pair (Y, y), and
common reference string crs, π′ ← Rand(crs, Y, π, r) and π′ ← P(crs, Y ′, y′) are
indistinguishable, where y′ and Y ′ are the randomized versions of y, Y respectively
using the randomization factor r.

The formal security definitions are laid out in the work by De Santis et al. [DMP88]
and Ananth et al. [ADKL19].

2.5 Randomizable Puzzle
Randomizable puzzles, first formally defined by Tairi et al. [TMM21], are one of the
main pillars that enable anonymous transactions in our coin-mixing protocol. They
consist of a cryptographic puzzle, which is a mathematical problem characterized by
public parameters, and a cryptographic challenge that must be solved by providing a
valid solution to the problem. A randomizable puzzle retains its cryptographic challenge
when its parameters are randomized. This allows for generating a computationally
indistinguishable new instance from an existing puzzle without changing the underlying
challenge. In Definition 4, we restate the definitions and constructions from Tairi et al.
[TMM21], used in the A2L+ protocol.

Definition 4 (Randomizable Puzzle [TMM21]). A randomizable puzzle scheme ΠRP
= (PSetup, PGen, PSolve, PRand) with a solution space S(and a function φ action on
S) consists of four algorithms defined as:

• (pp, td) ← PSetup(1λ). The puzzle setup algorithm is a PPT algorithm that on
input the security parameter 1λ, outputs public parameters pp and a trapdoor td.

• Z ← PGen(pp, ζ). The puzzle generate algorithm is a PPT algorithm that on
input the public parameters pp and a puzzle solution ζ, outputs a puzzle Z.

• ζ := PSolve(td, Z). The puzzle solve algorithm is a DPT algorithm that on input
a trapdoor td and a puzzle Z, outputs a puzzle solution ζ.

• (Z ′, r) ← PRand(pp, Z). The puzzle randomize algorithm is a PPT algorithm
that on input the public parameters pp and a puzzle Z (which has a solution
ζ), outputs a randomization factor r and a randomized puzzle Z ′ (which has a
solution φ(ζ, r)).

In their construction, Tairi et al. [TMM21] used a linear-only homomorphic en-
cryption scheme Ψ according to Section 2.3. The construction can be instantiated
over any group G, for which the discrete logarithm problem is assumed to be hard.
Tairi et al. [TMM21] set the group G to be an elliptic curve group of order q and

6

2.6 Commitment Scheme

the linear-only homomorphic encryption scheme Ψ to a Castagnos-Laguillaumie (CL)
[CL15] encryption scheme with message space M = Zq and a resulting solution space
S = Zq. We state the proposed construction in Construction 1.

Construction 1 (Randomizable Puzzle [TMM21]). Let G be a polynomial-time algo-
rithm that takes as input 1λ and outputs a description of a cyclic group G of prime
order q and a generator g. Let ΠE := (KGen, Enc, Dec) be an IND-CCA-secure public
key encryption scheme.

• (pp, td) ← PSetup(1λ). Run G(1λ) to obtain gp := (G, q, g). Sample a key pair
(skΨ, pkΨ)← KGen(1λ), set pp := (gp, pkΨ) and td := skΨ, and return (pp, td).

• Z ← PGen(pp, ζ). Parse pp as (gp, pkΨ), compute A = gζ and c← ΠE.Enc(pkΨ, ζ),
and return Z := (A, c).

• ζ := PSolve(td, Z). Parse td as skΨ and Z as (A, c), compute ζ ← ΠE.Dec(skΨ, c),
and return ζ.

• (Z ′, r) ← PRand(pp, Z). Parse Z as (A, c), parse pp as (gp, pkΨ), sample r ←$ S,
compute A′ = A · gr and c′ = c · ΠE.Enc(pkΨ, r), set Z ′ := (A′, c′), and return
(Z ′, r).

2.6 Commitment Scheme
Definition 5 (Commitment Scheme [Ped92]). A commitment scheme ΠCOM = (PΠCOM ,
VΠCOM) consists of the following two algorithms defined as:

• (com, decom)← PΠCOM(m). The commitment algorithm is a PPT algorithm that
on input the message m, outputs the commitment com and the decommitment
information decom.

• {0, 1} := VΠCOM(com, decom, m). The verification algorithm is a DPT algorithm
that on input the commitment com, the decommitment information decom, and
the message m, outputs 1 if the commitment is valid and 0 otherwise.

A commitment scheme ΠCOM allows a prover to commit to a message m while keeping
its value secret. A verifier can be convinced that the message m was committed by
revealing the decommitment information decom and the message m. We call the scheme
hiding if the commitment com does not reveal any information about the message m
to the verifier. The scheme further ensures that a commitment com to a message m
is binding, meaning that once created, the prover cannot change the message. More
formally:

7

2 Preliminaries

Definition 6 (Information-Theoretically Hiding [KL14]). A commitment scheme ΠCOM
is information-theoretically hiding if, for any two messages m0 and m1 in the message
space M, the distributions of the commitments to m0 and m1 are identical. For all
adversaries A it holds that

Pr
[
Hiding A

ΠCOM
= 1

]
= 1/2,

where the security game Hiding A
ΠCOM

is defined in Figure 2.1, and the probability is taken
over the random choices of all probabilistic algorithms.

Definition 7 (Computationally Binding [KL14]). A commitment scheme ΠCOM is
computationally binding if, for all PPT adversaries A, there exists a negligible function
negl(λ) such that for every λ ∈ N

Pr
[
Binding A

ΠCOM
(λ) = 1

]
≤ negl(λ),

where the security game Binding A
ΠCOM

is defined in Figure 2.1, and the probability is
taken over the random choices of all probabilistic algorithms.

Figure 2.1: Commitment hiding and binding security experiments.

Hiding A
ΠCOM

1 : (m0, m1)← A
2 : b← {0, 1}
3 : com← PΠCOM(mb)
4 : b′ ← A(com)
5 : return (b = b′)

Binding A
ΠCOM

(λ)
1 : (com, m, m′)← A
2 : b0 := (m 6= m′)
3 : b1 := (ΠCOM(m) = com = ΠCOM(m′))
4 : return b0 ∧ b1

In this work, we utilize the Pedersen commitment scheme [Ped92], known for its
information-theoretically hiding and computationally binding properties. This means
that the commitment com perfectly hides the committed message, and even a compu-
tationally unbounded adversary cannot determine any information about m from com.
However, the scheme is binding only against computationally bounded adversaries,
making it infeasible to open the commitment to a different message.

2.7 Digital Signatures
Definition 8 (Digital Signatures [KL14]). A digital signature scheme ΠDS with message
space M is composed of three algorithms ΠDS = (KGen, Sign, Vrf) defined as:

• (vk, sk)← KGen(1λ). The key generation algorithm is a PPT algorithm, that on
input the security parameter λ, outputs a verification key vk and a secret key sk.

8

2.7 Digital Signatures

• σ ← Sign(sk, m). The signing algorithm is a PPT algorithm, that on input a
secret key sk and message m ∈M, outputs a signature σ.

• b := Vrf (vk, m, σ). The verification algorithm is a DPT algorithm that, on input,
a verification key vk, message m ∈M, and signature σ, outputs a bit b.

It is required that except with negligible probability over (vk, sk) output by KGen(1λ), it
holds that Pr

[
Vrf (vk, Sign(sk, m), m) = 1

∣∣∣(vk, sk)← KGen(1λ)
]

= 1 for every m ∈M.

Of particular interest for us is the security notion of unforgeability. We distinguish
between existential (EUF-CMA) and strong (SUF-CMA) unforgeability under adaptive
chosen message attacks, which have both been first formally defined by Goldwasser et
al. [GMR88]. Roughly speaking, EUF-CMA ensures that a PPT adversary A cannot
create a valid signature σ on a message m that has not been previously signed, even if it
obtains signatures on polynomially many messages of its choice other than the challenge
message m. More formally, we define existential unforgeability as in Definition 9.

Figure 2.2: Unforgeability security experiments for digital signature schemes.

EUF-CMAA
ΠDS

(λ)
1 : Q := ∅
2 : (vk, sk)← KGenΠDS(1λ)
3 : (m∗, σ∗)← AOSign(sk,·)(vk)
4 : b∗ = Vrf (vk, m∗, σ∗) ∧ ((m∗, ·) /∈ Q)
5 : return b∗

SUF-CMAA
ΠDS

(λ)
1 : Q := ∅
2 : (vk, sk)← KGenΠDS(1λ)
3 : (m∗, σ∗)← AOSign(sk,·)(vk)
4 : b∗ = Vrf (vk, m∗, σ∗) ∧ ((m∗, σ∗) /∈ Q)
5 : return b∗

OSign(sk, m)
1 : σ ← Sign(sk, m)
2 : Q := Q ∪ {(m, σ)}
3 : return σ

Definition 9 (Existential Unforgeability [GMR88]). A signature scheme ΠDS =
(KGen, Sign, Vrf) is existentially unforgeable under an adaptive chosen-message at-
tack, or just unforgeable if for all PPT adversaries A, there is a negligible function
negl(λ) such that for every λ ∈ N

Pr
[
EUF-CMAA

ΠDS
(λ) = 1

]
≤ negl(λ),

where the security game EUF-CMAA
ΠDS

is defined in Figure 2.2, and the probability
is taken over the random choices of all probabilistic algorithms.

9

2 Preliminaries

Glaeser et al. [GMM+22] specifically require the digital signature scheme to satisfy
the strictly stronger security notion of strong unforgeability under adaptive chosen
message attacks (SUF-CMA). SUF-CMA ensures that even if a PPT adversary observes
a signature for a specific message m, it cannot produce a different valid signature on
that same message m. Strong unforgeability is formally defined as in Definition 10.

Definition 10 (Strong Unforgeability [GMR88]). A signature scheme ΠDS = (KGen,
Sign, Vrf) is strongly unforgeable under an adaptive chosen-message attack, or strongly
unforgeable if for all PPT adversaries A, there is a negligible function negl(λ) such
that for every λ ∈ N

Pr
[
SUF-CMAA

ΠDS
(λ) = 1

]
≤ negl(λ),

where the security game SUF-CMAA
ΠDS

is defined in Figure 2.2, and the probability
is taken over the random choices of all probabilistic algorithms.

In the security games for EUF-CMAA
ΠDS

and SUF-CMAA
ΠDS

in Figure 2.2, the adver-
sary is given access to the signing oracle OSign in both experiments.

In this work, we rely on the Schnorr signature scheme [Sch91], which can be proven
secure in the random-oracle model. We recall the construction according to [KL14] in
Construction 2.

Construction 2 (Schnorr Signature Scheme [KL14]). Let G be a polynomial-time
algorithm that takes as input 1λ and outputs a description of a cyclic group G of prime
order q and a generator g.

• (vk, sk)← KGen: Run G(1λ) to obtain (G, q, g). Choose a uniform sk ∈ Zq and
set vk := gsk. The secret key is sk, and the verification key is (G, q, g, vk). As
part of key generation, a function H : {0, 1}∗ → Zq is specified.

• (R, s) ← Sign: On input a secret key sk and a message m ∈ {0, 1}∗, choose
uniform k ∈ Zq and set R := gk. Then compute e := H(R, vk, m), followed by
s := [e · sk + k mod q]. Output the signature (R, s).

• {0, 1} := Vrf : On input a verification key (G, q, g, vk), a message m and a
signature (R, s), compute e := H(R, vk, m). Output 1 if gs = R · vke and 0
otherwise.

2.8 Adaptor Signatures
In most standard digital signature schemes, the signer directly commits to a given
message. This is perfectly feasible and desirable in general-purpose applications like
signing a document but leaves little to no opportunities for more advanced use cases.
If, for example, a signer only wants to commit to a message or transaction given that
certain criteria or circumstances are met, there is no possibility of achieving that with
standard digital signature schemes alone.

10

2.8 Adaptor Signatures

To circumvent that and enable a host of other applications, adaptor signatures have
first been proposed by Poelstra [Poe17] and later formally defined by Aumayr et al.
[AEE+21] in a payment channel setting. Initially, they were designed for a one-time
fair exchange of a coin given a witness. Because of their potential in other areas, they
are now being used in various other settings. This inherently begged the question of
whether the security model is strong enough for these diverging use cases.

Dai et al. [DOY22] consequently discovered flaws in the aforementioned definitions.
Interestingly, these faulty definitions have still been in use until a revised construction
was proposed by Gerhart et al. [GSST24], based on their novel dichotomic signature
scheme abstraction.

The security gaps discovered are lethal for blind conditional signatures and the A2L+
coin-mixing protocol proposed by Glaeser et al. [GMM+22]. We therefore revisit the
original definitions by Aumayr et al. [AEE+21] and then progress towards the provably
secure definitions used for dichotomic adaptor signatures by Gerhart et al. [GSST24].

2.8.1 Definition and Functionality
Adaptor signature schemes were defined in [AEE+21, GSST24] with respect to a digital
signature scheme ΠDS and a hard relation Rel.

They allow the signer holding a secret key sk to create a pre-signature σ̃ on any
message m w.r.t. a statement Y ∈ LRel. The pre-signature algorithm pSign therefore
encrypts a witness y from the statement Y in the pre-signature σ̃. The pVrf algorithm
allows verifying that σ̃ can be adapted to a valid full signature σ and that σ is a valid
signature for m. Given the witness y, σ̃ can be adapted to a full signature σ on the
message m using the Adapt algorithm. Additionally, the witness can be extracted with
the Extract algorithm, given σ and σ̃.

According to the definition of Gerhart et al. in [GSST24], the scheme as proposed
in [AEE+21] consists of the four algorithms stated in Definition 11.

Definition 11 (Adaptor Signature). An adaptor scheme ΠAS w.r.t. a hard relation
Rel and a signature scheme ΠDS = (KGen, Sign, Vrf) consists of four algorithms ΠAS =
(pSign, Adapt, pVrf , Extract) defined as:

• σ̃ ← pSign(sk, m, Y). The pre-signing algorithm is a PPT algorithm that on
input a secret key sk, message m ∈ {0, 1}lm and statement Y ∈ LRel, outputs a
pre-signature σ̃.

• b := pVrf (vk, m, Y, σ̃). The pre-verification algorithm is a DPT algorithm that
on input a verification key vk, message m ∈ {0, 1}lm, statement Y ∈ LRel, and
pre-signature σ̃, outputs a bit b.

• σ := Adapt(vk, σ̃, y). The adapting algorithm is a DPT algorithm that on input
a verification key vk, pre-signature σ̃, and witness y for the statement Y ∈ LRel,
outputs an adapted signature σ.

11

2 Preliminaries

• y := Extract(vk, σ̃, σ, Y). The extracting algorithm is a DPT algorithm that on
input a verification key vk, pre-signature σ̃, signature σ, and statement Y ∈ LRel,
outputs a witness y such that (Y, y) ∈ Rel, or ⊥.

Figure 2.3: Adaptor signatures for one-time fair coin exchange.

Alice(sk) Bob(Y, y)

pSign

Extract

pVrf

Adapt

σ̃

σ

Y, m

y

y

σ

Figure 2.3 illustrates the functionality of adaptor signatures for a fair coin exchange.
In this scenario, Alice wants to learn a secret to an NP statement Y held by Bob in
exchange for a signature. She uses the pSign algorithm to pre-sign a transaction message
m w.r.t. Y . Bob then first computes the pVrf algorithm to verify the correctness of the
pre-signature σ̃. Given that it is valid, Bob uses his secret y to adapt the pre-signature
σ̃ to a full signature σ with the help of the Adapt algorithm. Afterward, he publishes
the full signature σ and thereby receives his payment. Given the full signature σ and
the pre-signature σ̃, Alice can now leverage the Extract algorithm and learn the secret
value y.

2.8.2 Security Properties of Adaptor Signatures
As Gerhart et al. [GSST24] pointed out, the security definitions introduced by Aumayr
et al. [AEE+21] are not chosen strong enough for use cases outside a payment channel
setting. For us, especially the witness extractability is not chosen strong enough and
allows the adversary to generate malleable and leaky pre-signatures. We will see
later why this is an issue and show why, in our revised definition of blind conditional
signatures, this cannot be allowed. Dai et al. [DOY22] introduced the stronger security
notions of extractability and unique extractability, which we restate in this section
alongside the other security properties, following the work of Gerhart et al. [GSST24].

Pre-Signature Correctness

Intuitively, pre-signature correctness ensures that any honestly generated pre-signature
σ̃ on a message m under the secret key sk with an embedded honest statement

12

2.8 Adaptor Signatures

(Y, y) ∈ Rel and any honestly adapted signature σ can be successfully verified with the
corresponding public verification key vk. More formally:

Definition 12 (Pre-Signature Correctness). An adaptor signature ΠAS satisfies pre-
signature correctness, if for all λ ∈ N, every m ∈ {0, 1}lm and every statement/witness
pair (Y, y) ∈ Rel, it holds that

Pr


pVrf (vk, m, Y, σ̃) = 1

∧
Vrf (vk, m, σ) = 1

∧
(Y, y′) ∈ Rel

∣∣∣∣∣∣∣∣∣∣∣∣

(vk, sk)← KGen(1λ),
(Y, y)← GenR(1λ)(1λ),
σ̃ ← pSign(sk, m, Y),
σ := Adapt(vk, σ̃, y),

y′ := Extract(vk, σ̃, σ, Y)

 = 1.

Pre-Signature Adaptability

Intuitively, pre-signature adaptability guarantees that any verifiable pre-signature σ̃ on
the message m under the verification key vk can be adapted to a verifiable full signature
σ on the message m by knowing the witness y to the embedded honest statement Y .
More formally:

Definition 13 (Pre-Signature Adaptability). An adaptor signature scheme ΠAS sat-
isfies pre-signature adaptability, if for all λ ∈ N, messages m ∈ {0, 1}∗, state-
ment/witness pairs (Y, y) ∈ Rel, public keys vk and pre-signatures σ̃ ∈ {0, 1}∗ we
have pVrf (vk, m, Y, σ̃) = 1, then Vrf (vk, m, Adapt(vk, σ̃, y)) = 1.

Extractability

Intuitively, extractability ensures that given a valid adapted signature σ and corre-
sponding pre-signature σ̃ for the same message m, a valid witness y to the embedded
honest statement Y ∈ Rel can be extracted. Dai et al. [DOY22] extended this notion to
the multiple query setting, where the adversary is allowed to see multiple pre-signatures
and pre-signatures on multiple honestly sampled statements. Extractability inherently
implies the unforgeability of adaptor signatures. Consequently, in order to demonstrate
that an adversary A is capable of producing a valid forgery within the security proofs
in Chapter 8, we establish that A can successfully break the extractability property.
The adversary wins the Extractability A

ΠAS
game by outputting a special forgery (m∗, σ∗)

that does not allow successfully extracting a witness y. More formally:

Definition 14 (Extractability). An adaptor signature scheme ΠAS is extractable, if for
every PPT adversary A there exists a negligible function negl(λ) such that for every
λ ∈ N

Pr
[
Extractability A

ΠAS
(λ) = 1

]
≤ negl(λ),

where experiment Extractability A
ΠAS

is described in Figure 2.4, and the probability is
taken over the random choices of all probabilistic algorithms.

13

2 Preliminaries

Figure 2.4: Extractability A
ΠAS

(λ) security game.

Extractability A
ΠAS

(λ)
1 : (vk, sk)← KGen(1λ)
2 : b← 1
3 : S, C, T ← ∅

4 : (m∗, σ∗)← A(vk)NewY(1λ),pSign(sk,·),Sign(sk,·)

5 : assert Vrf (vk, m∗, σ∗)
6 : assert (m∗ /∈ S)
7 : for (Y, σ̃) ∈ T [m∗]
8 : if (Y, Extract(vk, σ̃, σ∗, Y)) ∈ Rel then
9 : b← 0

10 : return b

pSign(sk, m, Y)
1 : σ̃ ← pSign(sk, m, Y)
2 : T [m]← T [m] ∪ {(Y, σ̃)}
3 : return σ̃

Sign(sk, m)
1 : σ ← Sign(sk, m)
2 : S ← S ∪ {m}
3 : return σ

NewY(λ)
1 : (Y, y)← Rel.GenR(1λ)
2 : C ← C ∪ {Y }
3 : return Y

Unique Extractability

Intuitively, unique extractability prevents malleable pre-signatures, where two valid
signatures can be generated from the same pre-signature. In Section 5.2, we will show
how Gerhart et al. [GSST24] constructed an adversary that is able to create malleable
pre-signatures but is secure according to the definitions of Aumayr et al. [AEE+21].
Roughly speaking, unique extractability states that any verifying pre-signature creates
a commitment to a single valid signature. More formally:

Figure 2.5: UniqueExtractability A
ΠAS

(λ) security game.

UniqueExtractability A
ΠAS

(λ)
1 : (vk, sk)← KGen(1λ)
2 : (m, Y, σ̃, σ, σ′)← ApSign(sk,·,·),Sign(sk,·)(vk)
3 : assert (σ 6= σ′) ∧ Vrf (vk, m, σ) ∧ Vrf (vk, m, σ′)
4 : assert pVrf (vk, m, Y, σ̃)
5 : y ← Extract(vk, σ̃, σ, Y); y′ ← Extract(vk, σ̃, σ′, Y)
6 : return (Y, y) ∈ Rel ∧ (Y, y′) ∈ Rel

pSign(sk, m, Y)
1 : σ̃ ← pSign(sk, m, Y)
2 : return σ̃

Sign(sk, m)
1 : σ ← Sign(sk, m)
2 : return σ

Definition 15 (Unique Extractability). An adaptor signature scheme ΠAS is unique
extractable, if for every PPT adversary A there exists a negligible function negl(λ) such

14

2.8 Adaptor Signatures

that for every λ ∈ N

Pr
[
UniqueExtractability A

ΠAS
(λ) = 1

]
≤ negl(λ),

where experiment UniqueExtractability A
ΠAS

is described in Figure 2.5, and the probability
is taken over the random choices of all probabilistic algorithms.

Unlinkability

Intuitively, unlinkability ensures that no adversary can distinguish an adapted pre-
signature from a standard signature. This holds even when the adversary generates
the witnesses. More formally:

Figure 2.6: Unlinkability A
ΠAS

(λ) security game.

Unlinkability A
ΠAS

(λ, b)
1 : (vk, sk)← KGen(1λ)
2 : b′ ← AChall(b,sk,·,·),Sign(sk,·),pSign(sk,·,·)(vk)
3 : return b′

Chall(b, sk, m, (Y, y))
1 : assert (Y.y) ∈ Rel
2 : σ̃ ← ΠAS.pSign(sk, m, Y)
3 : σ0 := Adapt(vk, σ̃, y)
4 : σ1 ← ΠDS.Sign(sk, m)
5 : return σb

pSign(sk, m, Y)
1 : σ̃ ← ΠAS.pSign(sk, m, Y)
2 : return σ̃

Sign(sk, m)
1 : σ ← ΠDS.Sign(sk, m)
2 : return σ

Definition 16 (Unlinkability). An adaptor signature scheme ΠAS is unlinkable, if for
every PPT adversary A there exists a negligible function negl(λ) such that for every
λ ∈ N∣∣∣ Pr

[
Unlinkability A

ΠAS
(λ, 0) = 1

]
− Pr

[
Unlinkability A

ΠAS
(λ, 1) = 1

]∣∣∣ ≤ negl(λ),

where experiment Unlinkability A
ΠAS

is described in Figure 2.6, and the probability is taken
over the random choices of all probabilistic algorithms.

Pre-Verify Soundness

Intuitively, pre-verify soundness ensures that the pre-verification algorithm only evalu-
ates to true if the statement is in the relation and rejects pre-signatures computed using
statements Y /∈ Rel. Pre-verify soundness complements pre-signature adaptability,
which is restricted to honestly generated pre-signatures on statements in the relation
Y ∈ Rel. In Definition 17 and Definition 18, we restate computational and statistical
soundness according to Gerhart et al. [GSST24]. More formally:

15

2 Preliminaries

Definition 17 (Computational Pre-Verify Soundness). An adaptor signature scheme
ΠAS satisfies computational pre-verify soundness, if for every PPT adversary A there
exists a negligible function negl(λ) such that for every λ ∈ N and polynomially bounded
Y /∈ LRel,

Pr
[
(vk, sk)← KGen(1λ), (m, σ̃)← A(sk) : pVrf (vk, m, σ̃, Y) = 1

]
≤ negl(λ).

Definition 18 (Statistical Pre-Verify Soundness). An adaptor signature scheme ΠAS
satisfies statistical pre-verify soundness, if for every λ ∈ N, polynomially bounded
Y /∈ LRel, key pair vk, sk) in the support of KGen(1λ),

Pr[∃(m, σ̃) : pVrf (vk, m, Y) = 1] = 0.

16

3 Coin-Mixing
As we have already established in the introduction, coin-mixing services allow anony-
mous transactions of cryptocurrencies by combining multiple transactions of different
users. All the proposed protocols rely on a minimum number of users for this to work,
as linking the transactions becomes trivial otherwise. Furthermore, coin-mixers do not
directly solve the privacy issue on blockchains; they rather offer users the possibility of
sending coins to another address securely and privately if they choose to do so. While
the idea behind most of the coin-mixing services is identical, the system assumptions
and functionality in detail can vary significantly. In this chapter, we will first explore
the general idea and functionality behind coin-mixing protocols and then progress
toward specific definitions of the A2L+ protocol.

3.1 General Functionality
In the early days there have been numerous coin-mixing protocols like CoinJoin
[DS21] or CoinShuffle [RMK14], that allowed a set of mutually distrusting parties to
achieve unlinkability by combining their transaction inputs and outputs. While this
works perfectly fine in theory, the obvious challenge is finding and connecting enough
participants to initiate the protocol.

To solve this, third-party coin-mixing services arose. These either connect users to
execute the aforementioned protocols or directly act as tumblers themselves. In the
latter, users simply send their coins to the third-party hub. Once all coins have been
received, the hub sends them back in a randomized order. It is easy to see that in this
scenario, the hub can simply go offline and stop sending out the mixed coins, while
still accepting incoming requests.

In the pursuit of removing trust from the coin-mixing services, novel protocols have
been proposed. Most of these protocols act in essence as privacy-preserving payment
channel hubs. In contrast to the previously mentioned protocols and standard payment
channel hubs, the coins are not automatically sent to the receiving party but need to
be retrieved manually. Additionally, not even the hub should be able to connect the
depositor and withdrawer.

Figure 3.1 represents an overly simplified version of the basic functionality of modern
coin-mixers. Alice sends coins to the hub alongside a challenge. Once the hub receives
the coins, Alice can send the secret to Bob. Bob can then use the secret to solve the
challenge and retrieve the locked coins.

In the above-mentioned scheme from Figure 3.1 it is not easy to achieve unlinkability,
since the challenge the depositor provided and the one the withdrawer is solving are

17

3 Coin-Mixing

Figure 3.1: Coin-mixing simplified.

HubAlice Bob

σ̃

σ

the same. Some protocols like Tornadocash [PSS19] try to solve this by leveraging zero-
knowledge proof systems. These advanced zk-proofs are unfortunately not available
on all major blockchains. Since we are aiming at a generic solution, we will introduce
a new cryptographic primitive that enables us to overcome these issues and achieve
wide-ranging compatibility in the next section.

3.2 Synchronization Puzzles
In their work on Tumblebit, Heilman et al. [HAB+17] proposed a new primitive named
synchronization puzzles that paved the way towards widely compatible coin-mixing
services. The proposed protocol still relies on hashed time-lock contracts (HTLCs),
which are incompatible with some major blockchains. We will later see, how Tairi et al.
[TMM21] adapted the primitive in their A2L protocol to overcome that. Most notably,
synchronization puzzles serve as the basis for blind conditional signatures introduced
by Glaeser et al. [GMM+22], which will be analyzed in detail in Chapter 4. In this
section, we will focus on the cryptographic primitive’s groundwork and examine how it
is used in coin-mixing protocols. The following explanation is merely an abstraction of
the originally proposed version by [HAB+17], which is tailored to extract and visualize
the basic principles.

A synchronization puzzle is a protocol between three parties, referred to here as
Alice, Bob, and the Hub. It consists of the two phases puzzle promise and puzzle solver,
which are protocols themselves. The two phases can be abstracted in the following
way:

• (⊥, {τ,⊥}) ← PPromise
〈

H
(
skH , mHB

)
B

(
vkH , mHB

)〉
: The puzzle promise protocol is an

interactive protocol run between two parties H (with inputs the signing key skH ,
and a message mHB) and B (with inputs the verification key vkH , and a message
mHB). On a request from B, the protocol returns ⊥ to H and either ⊥ or a

18

3.2 Synchronization Puzzles

puzzle τ with an embedded signature σ on the message mHB under the signing
key skH to B.

• ({(σ∗, s),⊥}, {σ∗,⊥})← PSolver
〈

A
(
skA, mAH , τ

)
H

(
vkA, mAH

) 〉
: The puzzle solver protocol

is an interactive protocol between two parties A (with inputs the signing key skA,
a message mAH , and a puzzle τ) and H (with inputs the verification key vkA, and
a message mAH) and returns to both users either a signature σ∗ for the message
mAH under the signing key skA (A additionally receives a secret s) or ⊥.

In the beginning, Bob initiates the puzzle promise phase by requesting a puzzle from
the Hub with an embedded signature σ for some message mHB. He then sends the
puzzle privately to Alice. Alice now initiates the puzzle solver phase, by requesting the
solution s to the puzzle from the Hub. In exchange for the puzzle solution s, the Hub
receives a signature σ′ from Alice with respect to some message mAH . Lastly, Alice
sends the solution s to Bob, which allows him to extract the embedded signature σ
from the original puzzle. Figure 3.2 illustrates the overall protocol.

Figure 3.2: Synchronization puzzle. Dashed arrows represent secure, private communi-
cation.

Hub

Alice Bob

Puzzle Promise
Puzzle Solver

As Glaeser et al. [GMM+22] intuitively pointed out, such a protocol needs to satisfy
the following properties:

• Blindness. The puzzle solver protocol does not leak any information about the
puzzle, that could link Alice and Bob.

• Unlockability. The output σ of the puzzle solver protocol that Alice receives from
the Hub, enables Bob to solve the original puzzle and retrieve a valid signature to

19

3 Coin-Mixing

the original puzzle. The Hub can therefore not unlock the signature σ′ without
enabling Bob to retrieve the signature σ.

• Unforgeability. A solution to a puzzle can only be obtained by initiating the puzzle
solver protocol, meaning Bob can not derive n valid signatures without at least
n puzzle solver protocols being completed by the Hub.

3.3 A2L+

With the basic functionalities and underlying primitives laid out, we have everything to
put together the A2L+ protocol. Tairi et al. [TMM21] adapted synchronization puzzles
mainly in two ways. Firstly, by exchanging hashed time-lock contracts (HTLCs) with
adaptor signatures and randomizing the puzzles, and secondly, by adding a registration
protocol to protect against griefing attacks. For our analysis of blind conditional
signatures, the griefing protection is irrelevant. For coin-mixing services, on the other
hand, it is indispensable. Because of this, we will also dive into how the mechanism
works but explain it separately from the rest of the protocol.

3.3.1 System Assumptions

To make anonymous payments possible, A2L+ makes a few system assumptions. Some
of these are inherited by the underlying blockchain, and others must be considered
during implementation. From the underlying blockchain, we require that time locks
be available. This is necessary since it needs to be ensured that the coins used as
transaction inputs of the messages that are pre-signed in the puzzle promise phase
do not get spent in another transaction before the puzzle solver protocol execution
finishes. Hence, this ensures that Bob can ultimately claim his coins by publishing the
transaction. In A2L+, this is done implicitly by requiring the sender and receiver to
set up a payment channel with the Hub in advance. Furthermore, it is assumed that
all parties have carried out the key generation procedure beforehand.

The anonymity set is defined by the number of successful protocol executions. We
therefore require a minimum number of participants to enable anonymity in the first
place. Moreover, a constant amount of coins per transaction is required since linking
the sender and receiver otherwise becomes trivial.

Similar to Tumblebit [HAB+17], the A2L+ protocol runs in phases and epochs,
where each epoch consists of a registration phase, puzzle promise phase, and puzzle
solver phase, respectively. The duration for each epoch and phase can be chosen by
the protocol designer. We finally assume that no party colludes with the Hub and that
the communication between the sender and receiver is secure, private, and unnoticed
by the Hub.

20

3.3 A2L+

3.3.2 Achieving Unlinkability
Tairi et al. [TMM21] first needed to find a suitable puzzle promise and solver protocol
to achieve wide-ranging compatibility. Adaptor signatures defined in Section 2.8 are
compatible with most major blockchains, as they only require Schnorr signatures to be
available as an underlying cryptographic primitive. They can also be used to simulate
the puzzle promise and solver phases in the A2L+ protocol.

One obvious issue that adaptor signatures could not solve is the unlinkability between
the puzzle promise and puzzle solver protocol. If Alice and Bob use the same condition
for both phases inside the respective adaptor signatures, the Hub can easily link them.
To overcome this, Tairi et al. [TMM21] proposed to leverage randomizable puzzles
described in Section 2.5 and randomize the embedded condition. This obviously led to
the issue that the Hub can now not solve the puzzle in the puzzle solver phase because
he does not know the witness to the randomized puzzle. The solution to this is that the
Hub needs to extend the puzzle with the encryption of the witness under his secret key,
using a linear-only homomorphic encryption scheme described in Section 2.3. When
the Hub is given the randomized puzzle now, he can decrypt the witness from the
ciphertext using his private key and solve the randomized puzzle.

The complete protocol, excluding the registration phase described in Section 3.3.3,
is illustrated in Figure 3.3.

Figure 3.3: A2L+ protocol.

HubAlice

pSign(mAH)=σ̃AH

Rand()=

Extract(σ̃AH , σAH)=

Derand()=

pSign(mHB)

Adapt(σ̃AH ,)

Bob

pVrf (σ̃HB), V(π)

Rand()=

Derand()=

Adapt(σ̃HB,)

, π, σ̃HB

, σ̃AH

σAH

σHB

21

3 Coin-Mixing

Puzzle Promise. Bob initiates the protocol by requesting a pre-signature from the
Hub. The Hub then chooses a uniformly sampled witness y () at random, generates
a statement Y := gy from it, and computes the pSign algorithm with respect to some
message mHB, committing to the witness y. He transmits the pre-signature σ̃HB,
the encryption c ← Enc(ekH , y) of the witness y under his own encryption key and
a non-interactive zero-knowledge proof (NIZK) π, that certifies that the ciphertext
c encrypts the witness y, to Bob. Please note that in the figure, the lock icon
represents a tuple consisting of the statement and the ciphertext (Y, c).

Puzzle Transmission. Bob verifies that the pre-signature σ̃HB and the NIZK π are
valid. If that is the case, he randomizes the statement Y and the ciphertext c to
a fresh-looking version of the puzzle () and privately transmits them to Alice.
Alice then randomizes the tuple again (). Note that this second randomization
would theoretically not be necessary. It is merely added to minimize trust assumptions
between Alice and Bob.

Puzzle Solver. Alice can now start the puzzle solver protocol. She creates a pre-
signature σ̃AH with respect to some message mAH , committing to the rerandomized
puzzle () and thereby the rerandomized version of the original statement Y . She
transmits the pre-signature σ̃AH alongside the rerandomized encryption of the witness
to the Hub. The Hub can now use its decryption key to extract the witness from the
ciphertext and solve the puzzle. He uses the witness to compute the Adapt algorithm
and then publishes the full signature σAH to receive the transaction from Alice. Alice
can now leverage the Extract algorithm to extract the witness from the full
signature σAH and the pre-signature σ̃AH . Afterward, she derandomizes the witness

to the witness of the randomized puzzle she received from Bob and sends the
solution back to Bob. Bob finally derandomizes the witness again to receive the
witness to the original puzzle . With the witness Bob can use the Adapt
algorithm to create a full signature σHB on the message mHB from the pre-signature
σ̃HB and receive his coins.

3.3.3 Registration Protocol
The A2L+ protocol is initiated by the receiver Bob, requesting an initial commitment
from the Hub in the form of a pre-signature. The Hub therefore needs to lock a certain
amount of coins in each puzzle promise phase, without any assurance that the puzzle
solver phase will be executed. This exposes the Hub to a griefing attack, where an
adversarial receiver simply requests as many puzzle promises until all coins of the Hub
are locked, effectively resulting in a denial of service attack.

To solve this, Tairi et al. [TMM21] proposed the registration protocol shown in
Figure 3.4, which requires the sender to lock a certain amount of coins beforehand.
The sender Alice first generates a random token identifier tid and a commitment com
to it, using a Pedersen commitment, effectively locking the agreed amount of coins in

22

3.3 A2L+

Figure 3.4: Registration protocol. Dashed arrows represent secure, private communica-
tion.

HubAlice

tid←$ Zq

unblind(σ∗)=σtid

rand(σtid)=σ′
tid

Bob

Puzzle Promise
Registration

π(com), com(tid)

σ∗
σ′

tid, tid

σ′
tid, tid

an escrow account. The commitment additionally ensures that she can recover the
locked coins after a timeout period in case anything goes wrong. She then creates a
NIZK proof π for the commitment and sends both the commitment com and the NIZK
proof to the Hub. The Hub then validates the proof π, generates a blind signature σ∗

on the token id tid, and sends it back to Alice. It is important that the tid is hidden
inside the com and not visible to the Hub at this point. This is necessary since later
the receiver Bob starts the puzzle promise protocol with the tid from Alice in the clear.
If the tid is visible to the Hub here, linking Alice and Bob would be trivial for the Hub.

After Alice receives the blinded signature σ∗, she firstly unblinds it to receive the
valid signature σtid and secondly randomizes this signature to a fresh-looking version
σ′

tid. She then shares the valid signature σ′
tid and the tid privately with Bob. Bob uses

(tid, σ′
tid) to prove to the Hub that some sender has locked the required coins to start

the puzzle promise phase described in the previous Section 3.3.2.
As previously pointed out, the registration protocol is not needed in our blind

conditional signature scheme alone. It should be emphasized however that it is
indispensable for any coin-mixing protocol based on the presented concepts.

23

4 Definition and Current Security
Notions of Blind Conditional
Signatures

In this chapter, we will examine the current security notions of blind conditional
signatures as defined by Glaeser et al. [GMM+22]. A2L+ is designed as a payment
channel hub (PCH) based coin-mixing protocol. It is therefore assumed that a payment
channel has already been established before the protocol starts. Blind conditional
signatures were intended to serve as a new primitive to abstract coin-mixing and
establish a new standard that can be proven secure under various settings. The
following sections will introduce the game-based security notions by Glaeser et al.
[GMM+22] and Tairi et al. [TMM21] in detail and pinpoint the important parts.

4.1 Definition
Blind conditional signatures (BCS) are executed among three parties referred to here
as Alice, Bob, and the Hub. They are formally defined according to [GMM+22] as in
Definition 19.

Definition 19 (Blind Conditional Signature [GMM+22]). A blind conditional signature
ΠBCS := (Setup, PPromise, PSolver, Open) is defined with respect to a signature scheme
ΠDS := (KGen, Sign, Vrf) and consists of the following efficient algorithms:

• (ẽk, d̃k)← Setup(1λ): The setup algorithm takes as input the security parameter
1λ and outputs a key pair (ẽk, d̃k).

• (⊥, {τ,⊥}) ← PPromise
〈

H
(
d̃k, skH , mHB

)
B

(
ẽk, vkH , mHB

)〉
: The puzzle promise algorithm is

an interactive protocol between two users H (with inputs the decryption key d̃k,
the signing key skH , and a message mHB) and B (with inputs the encryption key
ẽk, the verification key vkH , and a message mHB) and returns ⊥ to H and either
a puzzle τ or ⊥ to B.

• ({(σ∗, s),⊥}, {σ∗,⊥}) ← PSolver
〈

A
(
skA, ẽk, mAH , τ

)
H

(
d̃k, vkA, mAH

) 〉
: The puzzle solving al-

gorithm is an interactive protocol between two users A (with inputs the signing

24

4.2 Blindness

key skA, the encryption key ẽk, a message mAH , and a puzzle τ) and H (with
inputs the decryption key d̃k, the verification key vkA, and a message mAH) and
returns to both users either a signature σ∗ (A additionally receives a secret s) or
⊥.

• {σ,⊥} ← Open(τ, s): The open algorithm takes as input a puzzle τ and a secret
s and returns a signature σ or ⊥.

Additionally, we define correctness as in Definition 20.

Definition 20 (Correctness [GMM+22]). A blind conditional signature ΠBCS is correct
if for all λ ∈ N, all (ẽk, d̃k) in the support of Setup(1λ), all (vkH , skH) and (vkA, skA)
in the support of ΠDS.KGen(1λ), and all pairs of messages (mHB, mAH), it holds that

Pr
[
Vrf (vkH , mHB, Open(τ, s)) = 1

]
= 1

and
Pr

[
Vrf (vkA, mAH , σ∗) = 1

]
= 1

where

• τ ← PPromise
〈

H
(
d̃k, skH , mHB

)
B

(
ẽk, vkH , mHB

)〉
and

• ((σ∗, s), σ∗)← PSolver
〈

A
(
skA, ẽk, mAH , τ

)
H

(
d̃k, vkA, mAH

) 〉
.

4.2 Blindness
Blindness informally states that the signer is not able to derive any information from
the puzzle that can link the sender and the receiver. This means that there exists no
PPT adversary that can link the two parties.

Definition 21 (Blindness [GMM+22]). A blind conditional signature ΠBCS is blind if
there exists a negligible function negl(λ) such that for all λ ∈ N and all PPT adversaries
A, it holds that

Pr
[
ExpBlnd A

ΠBCS
(λ) = 1

]
≤ 1

2 + negl(λ),

where ExpBlnd A
ΠBCS

is defined in Figure 4.1, and the probability is taken over the random
choices of all probabilistic algorithms.

Glaeser et al. [GMM+22] state that blindness is intuitively broken when the Hub
and the receiver (Bob) collude. Therefore, they do not consider such a scenario and
model only an adversarial Hub in the blindness experiment ExpBlnd A

ΠBCS
in Figure 4.1.

We will later see the implications of this assumption on the blindness property of the
protocol. For now, we only analyze the existing definition.

25

4 Definition and Current Security Notions of Blind Conditional Signatures

Figure 4.1: Blindness experiment.

ExpBlnd A
ΠBCS

(λ)
1 : (ẽk, vkH

0 , vkH
1 , (mHB,0, mAH,0), (mHB,1, mAH,1))← A(1λ)

2 : (vkA
0 , skA

0)← KGen(1λ)
3 : (vkA

1 , skA
1)← KGen(1λ)

4 : τ0 ← PPromise
〈
A(vkA

0 , vkA
1), B(ẽk, vkH

0 , mHB,0)
〉

5 : τ1 ← PPromise
〈
A(vkA

0 , vkA
1), B(ẽk, vkH

1 , mHB,1)
〉

6 : b← {0, 1}

7 : (σ∗
0, s0)← PSolver

〈
A

(
skA

0 , ẽk, mAH,0, τ0⊕b

)
,A

〉
8 : (σ∗

1, s1)← PSolver
〈
A

(
skA

1 , ẽk, mAH,1, τ1⊕b

)
,A

〉
9 : if (σ∗

0 =⊥) ∨ (σ∗
1 =⊥) ∨ (τ0 =⊥) ∨ (τ1 =⊥)

10 : σ0 := σ1 := ⊥
11 : else
12 : σ0⊕b ← Open(τ0⊕b, s0)
13 : σ1⊕b ← Open(τ1⊕b, s1)
14 : b′ ← A(σ0, σ1)
15 : return (b = b′)

At the beginning of the given experiment the adversary on input the security param-
eter λ outputs an encryption key ẽk in support of an IND-CCA-secure homomorphic
encryption scheme, two signing keys vkH

0 , vkH
1 , and two tuples consisting of two message

pairs (mHB, mAH) for the puzzle promise and puzzle solver phases respectively. The
adversarial Hub then performs the puzzle promise protocol with Bob and outputs two
different puzzles τ0 and τ1. These two puzzles are then given to the adversary by Alice
while performing the puzzle solver protocol, outputting two signature/secret tuples
(σ∗, s). Finally, the Open algorithm is executed to output the signatures σ0 and σ1.
The adversarial Hub wins the game if he can distinguish which signature belongs to
which puzzle.

For blindness to hold, the puzzle can not leak any information that enables the
adversary to link it to the underlying signature. Even if the Hub uses different signing
keys for each puzzle promise and puzzle solver interaction, linking the two can not
be possible. Intuitively, the A2L+ protocol achieves this by leveraging randomizable
puzzles, namely by randomizing the embedded statements of the adaptor signatures.

26

4.3 Unlockability

4.3 Unlockability
The notion of unlockability ensures that it is hard for the Hub to generate a valid full
signature during the puzzle solver protocol while not allowing Bob to create a valid
full signature on the pre-signature of the corresponding puzzle promise. This evidently
should prevent the Hub from stealing coins from Alice.
Definition 22 (Unlockability [GMM+22]). A blind conditional signature ΠBCS is
unlockable if there exists a negligible function negl(λ) such that for all λ ∈ N and all
PPT adversaries A, it holds that

Pr
[
ExpUnlock A

ΠBCS
(λ) = 1

]
≤ negl(λ),

where ExpUnlock A
ΠBCS

is defined in Figure 4.2, and the probability is taken over the
random choices of all probabilistic algorithms.

Figure 4.2: Unlockability experiment.

ExpUnlock A
ΠBCS

(λ)
1 : (ẽk, vkH , mHB, mAH)← A(1λ)
2 : (vkA, skA)← KGen(1λ)

3 : τ ← PPromise
〈
A(vkA), B(ẽk, vkH , mHB)

〉
4 : if τ =⊥
5 : (σ̂, m̂)← A
6 : b0 := (Vf(vkA, σ̂, m̂) = 1)
7 : if τ 6=⊥

8 : (σ∗, s)← PSolver
〈
A

(
skA, ẽk, mAH , τ

)
,A

〉
9 : (σ̂, m̂)← A

10 : b1 := (Vf(vkA, σ̂, m̂) = 1) ∧ (m̂ 6= mAH))
11 : b2 := (Vf(vkA, σ∗, mAH) = 1)
12 : b3 := (Vf(vkH , mHB, Open(τ, s)) 6= 1)
13 : return b0 ∨ b1 ∨ (b2 ∧ b3)

In the unlockability experiment ExpUnlock A
ΠBCS

in Figure 4.2 again, an adversarial
Hub is modeled. On input the security parameter λ, the adversary outputs the
encryption key ẽk, a signing key vkH , and two messages mHB and mAH for the puzzle
promise and puzzle solver phases respectively. Additionally, a signing/verification key
pair is generated by the sender Alice (vkA, skA). The Hub and Bob then engage in the
puzzle promise protocol and output a puzzle τ . If τ is valid, the Hub engages in the
puzzle solver protocol with Alice, outputting a signature σ∗ and a secret s.

The adversary wins the game if it can fulfill one of the following three conditions:

27

4 Definition and Current Security Notions of Blind Conditional Signatures

• b0: Output a valid message signature pair under Alice’s verification key vkA,
while τ is invalid and therefore does not allow extracting a valid signature on
the message mHB.

• b1: Output a valid message signature pair signed under Alice’s verification key
vkA on a message other than mAH , effectively creating a valid forgery and stealing
coins from Alice.

• b2 ∧ b3: Output a valid signature for the message mAH signed under Alice’s
verification key vkA, while the secret s from the puzzle solver protocol does not
allow Bob to output a valid signature on the message mHB signed by the Hub.

In the unlockability experiment ExpBlnd A
ΠBCS

in Figure 4.2, the focus is on enabling
Bob to generate a valid full signature for the previously agreed upon message mHB. In
a blockchain-based setting, such a message might correspond to a transaction. Apart
from generating a valid signature for the given transaction, a few other conditions
need to hold for the transaction to be accepted e.g., the transaction inputs need to be
unspent. The A2L+ protocol solves this by requiring a payment channel setup before
the protocol execution is initiated, effectively rendering such a scenario impossible.

4.4 Unforgeability
Generally speaking, the goal of the notion of unforgeability is to prevent the adversary
from forging a signature on any message with a signing key other than its own.
Unforgeability therefore protects the signer and guarantees that any valid signature has
been signed by no other user than the one holding the signing key. In any blockchain
based setting this ensures the security of the coins, since transaction messages can
only be signed by the owner of the secret signing key. When using blind conditional
signatures as a coin-mixing protocol, the notion of unforgeability more precisely prevents
anyone but the Hub from signing transaction messages under the Hub’s verification
key vkH and therefore protects the Hub from getting coins stolen. In contrast to the
preceding security games, Glaeser et al. [GMM+22] give the adversary access to a
puzzle promise and a puzzle solver oracle in Definition 23.

Definition 23 (Unforgeability [GMM+22]). A blind conditional signature ΠBCS is
unforgeable if there exists a negligible function negl(λ) such that for all λ ∈ N and all
PPT adversaries A, it holds that

Pr
[
ExpUnforg A

ΠBCS
(λ) = 1

]
≤ negl(λ),

where ExpUnforg A
ΠBCS

is defined in Figure 4.3, and the probability is taken over the
random choices of all probabilistic algorithms.

In the unforgeability experiment ExpUnforg A
ΠBCS

in Figure 4.3 on input the security
parameter λ a key pair (ẽk, d̃k) in support of the IND-CCA-secure homomorphic

28

4.4 Unforgeability

Figure 4.3: Unforgeability experiment.

ExpUnforg A
ΠBCS

(λ)
1 : L := ∅,Q := 0
2 : (ẽk, d̃k)← Setup(1λ)
3 : (vkH

1 , m1, σ1), ..., (vkH
q , mq, σq)← AOPP(·),OPS(·)(ẽk)

4 : b0 := ∃i ∈ [q] s.t. (vkH
i , ·) ∈ L ∧ (vkH

i , mi) /∈ L ∧ Vf(vkH
i , mi, σi) = 1

5 : b1 := ∀i ∈ [q], (vkH
i , mi) ∈ L ∧ Vf(vkH

i , mi, σi) = 1
6 : b2 :=

∧
i,j∈[q],i 6=j

(vkH
i , mi, σi) 6= (vkH

j , mj , σj)

7 : b3 := (Q ≤ q − 1)
8 : return b0 ∨ (b1 ∧ b2 ∧ b3)

OPP(m)
1 : (vkH , skH)← ΠAS.KGen(1λ)
2 : L := L ∪ {(vkH , m)}

3 : ⊥ ← PPromise
〈
H(d̃k, skH , m),A(vkH)

〉
OPS(vkA, m′)

1 : (σ∗, s)← PSolver
〈
A, H(d̃k, vkA, m′)

〉
2 : if σ∗ 6= ⊥ then Q := Q+ 1

encryption scheme ΠE according to Section 2.3 is sampled. The adversary A then
generates q triples (vkH , m, σ) by querying the puzzle promise and puzzle solver oracles
OPP and OPS. The adversary wins the game by either outputting a valid forgery,
meaning a signature on a previously not queried message (condition b0), or if all the
below conditions hold:

• b1: All q triples (vkH , m, σ) are valid and the puzzle promise oracle OPP has
been queried for all q corresponding verification key, message pairs (vk, m). This
ensures that all signatures are valid and signed under a verification key vkH

i

owned by the Hub.

• b2: All q triples (vkH , m, σ) are different, meaning the adversary was able to
output q distinct signatures.

• b3: The puzzle solver oracle OPS has been queried at most q−1 times. Therefore,
at least one signature was not honestly signed by the Hub and needs to be a
forgery created by the adversary.

29

4 Definition and Current Security Notions of Blind Conditional Signatures

The puzzle promise and puzzle solver oracles OPP and OPS are modeled in Figure 4.3
in an idealized way. On each query to OPP(m), a new key pair (vkH , skH) in support
of the key generation algorithm KGen of the adaptor signature scheme ΠAS is sampled
and the verification key/message tuple (vkH , m) is added to the language L. The
puzzle solver oracle OPS(vkA, m′) on input Alice’s verification key vkA and a message
m′ runs the PSolver protocol. If the PSolver execution was successful, OPS returns the
resulting signature σ∗ alongside the secret s. Additionally, it increments the query
counter Q by one.

Important to note here is that the secret s output by the OPS oracle is not necessarily
bound to a single message signature tuple. Even though condition b2 states that all
tuples need to be different, this does not imply that all embedded secrets must also be
different. This distinction will become crucial in the following chapters.

4.5 One-More CCA-A2L Security
Glaser et al. [GMM+22] introduced the security notion of one-more CCA-A2L security
(OM-CCA-A2L) as a helper for their security proof of unforgeability. Let ΠE be a
IND-CCA-secure homomorphic public key encryption scheme according to Section 2.3.
In the OM-CCA-A2L A

ΠE,q experiment first the query counter Q is set to 0 and on input
the security parameter λ a key pair (ek, dk) is generated using the KGen algorithm
of the encryption scheme ΠE. Then again, on input of the security parameter λ,
several q + 1 random values r1, . . . , rq+1 are generated and encrypted using the Enc
algorithm. The adversary is given the encryption key ek, the encrypted values ci, and
the statements of the original random values hi = gri . Additionally, an oracle O is
provided that takes as inputs a verification key vk, message m, statement h, encrypted
value c, and pre-signature σ̃. O returns an adapted full signature on the message
m if the pre-verification algorithm of the adaptor signature scheme ΠAS verifies the
correctness of the pre-signature σ̃ and the value encrypted in the ciphertext c is a valid
witness to the statement h, otherwise it returns ⊥. The adversary wins the game if it
can output q + 1 values r′

i, such that for all i ∈ {1, . . . , q + 1} it holds that ri = r′
i and

the oracle O has been queried at most q times.

Definition 24 (OM-CCA-A2L [GMM+22]). An encryption scheme ΠE is one-more
CCA-A2L-secure (OM-CCA-A2L) if there exists a negligible function negl(λ) such that
for all λ ∈ N, all polynomials q = q(λ), and all PPT adversaries A, it holds that

Pr
[
OM-CCA-A2L A

ΠE,q(λ) = 1
]
≤ negl(λ),

where OM-CCA-A2L A
ΠE,q is defined in Figure 4.4, and the probability is taken over the

random choices of all probabilistic algorithms.

The OM-CCA-A2L A
ΠE,q security game serves as an adaptation of the one-more discrete

logarithm assumption. The adversary aims to find the witnesses ri to the statements
hi = gri . Given that the encryption scheme is IND-CCA-secure and the adversary

30

4.5 One-More CCA-A2L Security

Figure 4.4: OM-CCA experiment.

OM-CCA-A2L A
ΠE,q(λ)

1 : Q := 0
2 : (ek, dk)← ΠE.KGen(1λ)
3 : r1, . . . , rq+1 ←$ {0, 1}λ

4 : ci ← ΠE.Enc(ek, ri)

5 : (r′
1, . . . , r′

q+1)← AOA2L
dk,ΠE,ΠAS (ek, (c1, gr1), . . . , (cq+1, grq+1))

6 : if r′
i = ri ∀i ∈ 1, . . . , q + 1 ∧Q ≤ q then return 1

7 : else return 0

OA2L
dk,ΠE,ΠAS

(vk, m, h, c, σ̃)
1 : check if vk ∈ Supp(ΠAS.KGen(1λ))
2 : x̃← ΠE.Dec(dk, c)
3 : if ΠAS.pVrf (vk, m, h, σ̃) = 1 and gx̃ = h

4 : Q := Q+ 1
5 : return σ′ ← ΠAS.Adapt(vk, σ̃, x̃)
6 : else return ⊥

A does not know the decryption key dk, the probability of outputting the decrypted
witnesses ri given the ciphertexts ci is negligible without access to an oracle. Therefore,
outputting the witness ri for any statement hi is indistinguishable from solving the
discrete logarithm. It holds that winning the OM-CCA-A2L A

ΠE,q game is computationally
indistinguishable from solving the one-more discrete logarithm assumption, which is
believed to be hard in polynomial time. The formal proof can be found in the work by
Glaeser et al. [GMM+22].

In contrast to the unforgeability experiment ExpUnforg A
ΠBCS

in Figure 4.3, the adver-
sary in the OM-CCA-A2L A

ΠE,q experiment needs to find the witnesses to the encrypted
statements and not the signatures of messages under a verification key vk. More
specifically, in the ExpUnforg A

ΠBCS
game, the goal of A is to output q valid signatures

while querying the OPS oracle at most q − 1 times. This does not inherently imply
that all secrets s output by the PSolver algorithm during the OPS queries are dif-
ferent. In contrast to the OM-CCA-A2L A

ΠE,q game, winning the ExpUnforg A
ΠBCS

game
therefore does not imply that q unique witnesses to the embedded statements have
been output. Evidently, the hardness of the underlying mathematical problems differs.
This divergence highlights the need to exercise caution when attempting to reduce the
unforgeability experiment ExpUnforg A

ΠBCS
to the OM-CCA-A2L A

ΠE,q experiment.

31

5 Problems with Current Security
Notions

In this chapter, we identify shortcomings of the current security definitions of blind
conditional signatures and issues with the A2L+ protocol construction by Glaeser et
al. [GMM+22]. Some of which stem from the security properties of adaptor signatures
by Aumayr et al. [AEE+21], which have limitations outside a payment channel setting,
as has been pointed out by [GSST24, DOY22]. These limited security properties
introduced a flaw in the security proof of unforgeability, as we will see in Section 5.2.
Other issues arise from system assumptions that do not always hold and render the
scheme insecure under various conditions. Finally, we examine the limitations associated
with the payment channel setup of the A2L+ protocol.

5.1 Problems with Current Blindness Definition

In the A2L+ protocol, the authors assume that the Hub does not collude with either
the sender (Alice) or the receiver (Bob). It is furthermore stated that in case of a
collusion, linking two transactions becomes trivial since the other party can simply
reveal the identity to the Hub. We boldly state that this assumption is far from a
real-world scenario. Say Alice communicates with Bob over a secure private channel.
The only information Alice or Bob might have about each other is the IP address of the
network from which they are accessing the internet. Both of them however may still
want to hide their public blockchain addresses from each other and the Hub. Effectively,
even when the Hub colludes with either one of the two, the only information that must
be leaked are the IP addresses and any auxiliary information that the parties willingly
share. Our protocol therefore needs to protect the sender and the receiver from getting
deanonymized in case of collusion.

Additionally, Tairi et al. [TMM21] acknowledge that two transactions can be easily
linked when the Hub reduces the anonymity set. This weakness is unfortunately present
in all coin-mixing applications. To circumvent that, the parties need to check the
anonymity set themselves after the protocol execution finishes. To improve anonymity,
they can further engage in more rounds of the protocol.

First, we will analyze the impact of aborts on the blindness property. Following
this, we will demonstrate how the blindness of the A2L+ protocol can be compromised
through collusion between the Hub and one of the other parties.

32

5.1 Problems with Current Blindness Definition

5.1.1 Blindness under Aborts
First, we investigate blindness under aborts in which the Hub acts as the malicious
party. As stated by Tairi et al. [TMM21], the Hub alone can reduce the anonymity
set and effectively break blindness by letting all but one transaction fail in a single
epoch. While the size of the anonymity set can be checked at the end of each epoch,
we still need to ensure that the adversary can not deduce any information from letting
an execution fail.

In the blindness experiment ExpBlnd A
ΠBCS

in Figure 4.1 in Lines 9 and 10, the adversary
receives ⊥ for both signatures when one of the puzzles or signatures is invalid (⊥):

if ((σ∗
0 =⊥) ∨ (σ∗

1 =⊥) ∨ (τ0 =⊥) ∨ (τ1 =⊥))
σ0 := σ1 := ⊥

In the A2L+ protocol, this is however not exactly the case. When receiving ⊥ on
one of the puzzles/signatures, we do not get ⊥ for all the other executions as well. By
simply letting one of the puzzle promise PPromise or puzzle solver PSolver protocols
return ⊥, the adversary additionally learns which execution failed and which succeeded.
To model this more precisely, we introduce the notion of selective failure blindness in
Section 6.1.

5.1.2 Blindness Between Sender and Receiving Parties
In this section, we explore a weakness of the A2L+ protocol, which can only be
exploited when the Hub and Bob collude. We argue that Alice at least needs to be able
to detect that blindness is broken in case there is a collusion or the PSolver execution
needs to fail. The origin of this weakness lies in the fact that Alice fully trusts Bob
regarding the validity of the puzzle. Since Alice also locks her coins in the pre-signature
σ̃AH based on the statement Y ′′ contained in the puzzle, we further argue that she
needs to be able to prove in some way that the puzzle she receives from Bob is valid.

Let the Hub sample a set of key pairs, each consisting of an encryption key and
a decryption key (ek, dk). For each puzzle promise protocol, the Hub now chooses a
different encryption key ek from the set to generate the ciphertext of the witness for
the associated challenge alongside the NIZK π. When checking the validity of the NIZK
π, an honest Bob would detect that the used encryption key ek is not the same as the
advertised public key of the Hub. Since Bob is acting maliciously, he simply sends the
ciphertext and the challenge along to Alice. Alice now randomizes the ciphertext and
initiates the puzzle solver protocol. The only thing left to do for the Hub is to try
decrypting the ciphertext with every decryption key previously used. As soon as he
finds a matching key, he can link Alice’s public address to Bob.

Note that in our Construction 1 of a randomizable puzzle scheme, in the PRand
algorithm, the public key is required to generate a randomized puzzle that can be solved
using the public key of the Hub as a trapdoor. Hence, if the public key used to generate
the original puzzle is different from the advertised public key of the Hub, the PSolver

33

5 Problems with Current Security Notions

protocol will fail. Unfortunately, not all randomizable puzzle constructions have this
inherent property and the issue that Alice’s coins are locked for the duration of the
protocol execution still persists. To combat this, we implicitly include a randomized
NIZK into the output of the PPromise protocol, which Alice needs to verify during the
PSolver execution in our revised Construction 3 of the A2L+ protocol.

According to the system assumptions, the ExpBlnd A
ΠBCS

assumes that there is no
collusion and hence the game is correctly modeled in that regard. This however
highlights the complexity of proofing the security of a coin-mixing protocol under
various circumstances.

5.1.3 Blindness Between Sending Parties and Receiver
Similar to the above, we now examine the case of collusion between the sender (Alice)
and the Hub. The registration protocol introduces a weakness in the protocol, which
can be used to break blindness. As previously mentioned, the registration protocol is
an extension to blind conditional signatures and is needed to protect against griefing
attacks. This type of attack is mostly beneficial when blind conditional signatures are
used as a coin-mixing protocol, where monetary assets are being transferred. When
looking at the blindness experiment, the registration protocol can be seen as part of
the puzzle promise phase.

During the registration protocol described in Section 3.3.3, Alice first chooses a
random transaction tid and creates a commitment com to it, which gets blindly signed
by the Hub. This signed commitment com is later used to initiate the puzzle promise
protocol and serves as proof of collateral. To prove to the Hub that the collateral
has been locked, Bob needs to send the tid in the clear at the beginning of the puzzle
promise protocol alongside the unblinded and randomized signature on the tid. Since
the Hub and Alice collude, they can easily link the two transactions by checking the
used tid. In a scenario where a collusion between Alice and the Hub must be prevented,
the receiver Bob therefore must execute the registration protocol himself. Since this is
not an issue with blind conditional signatures, we will not further investigate it in this
work.

5.2 Problems with Current Unforgeability Definition
As has been previously mentioned, the security definitions of adaptor signatures by
Aumayr et al. [AEE+21] have some limitations, which have first been discovered by
Dai et al. [DOY22]. These limitations mostly stem from system assumptions that hold
in the context of the original definitions and their purpose. For our use case, these
assumptions do however not always hold and therefore lead to an unsecure protocol.
Unfortunately, Tairi et al. [TMM21] and Glaeser et al. [GMM+22] still rely on the
definitions by Aumayr et al. [AEE+21]. This introduces a weakness into BCS and
allows breaking unforgeability.

The following attack has been introduced by Gerhart et al. [GSST24]. We first recall

34

5.2 Problems with Current Unforgeability Definition

their construction of a secure adaptor signature scheme according to the definitions by
Aumayr et al. [AEE+21], which has malleable pre-signatures in figure Figure 5.1.

Figure 5.1: Adaptor signature scheme Π′
AS with malleable pre-signatures.

pSign′(sk, m, Y)
1 : (r1, r2)←$ Z2

p

2 : σ̃1 ← pSign(sk, m, Y ; r1)
3 : σ̃2 ← pSign(sk, m, Y ; r2)
4 : return (σ̃1, σ̃2)

Adapt′(vk, σ̃, y)
1 : (σ̃1, σ̃2) =: σ̃

2 : σ := Adapt(vk, σ̃1, y)
3 : return σ

pVrf ′(vk, m, Y, σ̃)
1 : (σ̃1, σ̃2) =: σ̃

2 : b1 := pVrf (vk, m, Y, σ̃1)
3 : b2 := pVrf (vk, m, Y, σ̃2)
4 : return b1 ∧ b2

Extract′(vk, σ̃, σ, Y)
1 : (σ̃1, σ̃2) =: σ̃

2 : y =: Extract(vk, σ̃1, σ, Y)
3 : if (Y, y) ∈ Rel return y

4 : return Extract(vk, σ̃2, σ, Y)

The adaptor signature scheme Π′
AS is based on an unconnected adaptor signature

scheme ΠAS. Each pre-signature consists of two distinct pre-signatures on the same
message and statement. This allows us to adapt each pre-signature to two distinct full
signature on the same message.

We now additionally recall the adversary A according to Gerhart et al. [GSST24]
that breaks unforgeability as defined in Figure 4.3, when instantiated with the adaptor
signature scheme Π′

AS. Let the adversary A query the puzzle promise and puzzle
solver oracles (OPP,OPS) at least one time each on a random message m to learn a
pre-signature σ̃ and a full signature σ on the message m and the random statement Y .
The adversary now queries the Extract algorithm using σ̃ and σ to learn the witness
y to the statement Y . With the pre-signature σ̃ and the corresponding witness y, A
parses σ̃ := (σ̃1, σ̃2) and computes σ̃′ := (σ̃2, σ̃1), by swapping the order of the pair.
Finally, the adversary queries the Adapt′ algorithm on input (σ̃′) and learns a second
full signature σ′ on the message m. Since ΠAS is an unconnected adaptor signature
scheme, σ′ is distinct from σ with overwhelming probability.

With this attack, the adversary renders the conditions b1, b2 and b3 in Lines 5 to 7 of
ExpUnforg A

ΠBCS
in Figure 4.3 to true and therefore breaks unforgeability by winning the

game. More specifically, each verification key, message pair (vk, m) is in the language L,
and each σ is a valid signature on m (b1). All triples of (vk, m, σ) are unique (b2) since
all the signatures σ are distinct and the puzzle solver oracle OPS has been queried at
least one time less than valid signatures output (b3).

To prevent this attack, we require that the adaptor signature scheme ΠAS in our
revised version of the A2L+ protocol in Construction 3 satisfies the improved security
definitions according to Gerhart et al. [GSST24] as stated in Section 2.8.2.

35

5 Problems with Current Security Notions

5.3 Limitations of Payment Channel Setup
One of the goals of the A2L+ protocol was to design a highly performant and widely
compatible coin-mixing protocol. To solve that, Glaeser et al. [GMM+22] introduced
the cryptographic concept of blind conditional signatures. This new concept only
requires adaptor signatures and a NIZK proof system as an underlying cryptographic
primitive. When constructing a coin-mixing protocol and instead of signing arbitrary
messages we sign blockchain transactions, the situation however changes. In the
puzzle promise phase, the Hub now creates a pre-signature on a transaction. This
pre-signature σ̃ and the encapsulated statement Y essentially certify that given a
witness y to the statement Y , the receiver can complete the pre-signature σ̃ to a
full signature on the transaction. This allows to retrieve the previously agreed-upon
coins. Since the puzzle solver protocol gets executed at a later point in time and the
receiver can only retrieve their coins from the Hub, once they receive the witness y
to the statement Y , it needs to be ensured that the Hub does not spend the coins
in the meantime. Given the nature of blockchains, we therefore need a method to
lock the transaction inputs of the Hub and give the receiver enough time to publish
the transaction on-chain and retrieve the coins. In A2L+, this is done implicitly by
requiring a payment channel setup before the protocol starts. This setup inherently
does not allow one party to act maliciously without getting punished. Even though this
does solve our problem at hand, a payment channel setup is quite a complex system
and might not always be realizable. As mentioned at the beginning of this section,
we are aiming at a widely compatible coin-mixing protocol that may even support
cross-chain transactions. Having the payment channel setup as a prerequisite therefore
contradicts one of our main goals. We therefore leave it open to choose the preferred
method of implementation and simply emphasize here that the coins need to be locked
for the duration of the protocol execution.

36

6 Enhanced Security Definitions
In the previous chapter, we elaborated on the shortcomings of the current security
notions. We will now introduce the notion of selective failure blindness, a strictly
stronger security property for blindness. Selective failure blindness ensures blindness
even in the case of adversarial aborts.

6.1 Selective-Failure Blindness
Camenisch et al. [CNs07] first introduced the notion of selective-failure blindness,
which states that blindness also needs to hold in case the signer learns that some
executions failed. While investigating the security of blind signatures under aborts,
Fischlin et al. [FS09] augmented the work of Camenisch et al. [CNs07] and showed
how every blind signature scheme can be turned into one that is selective-failure blind.

In this section, we will first restate the general notion of selective failure-blindness
in Definition 25 and then present an adapted definition for a selective-failure blind
conditional signature scheme in Definition 26.

Definition 25 (Selective-Failure Blindness [CNs07]). A blind signature scheme ΠBS =
(KGenBS, 〈S,U〉, Vrf BS) is selective-failure blind if it is strongly unforgeable according
to Definition 10 and for every PPT adversary A (working in modes find, issue and
guess) there exists a negligible function negl(λ) such that for every λ ∈ N

Pr
[
ExpSFBlnd A

ΠBS
(λ) = 1

]
≤ 1/2 + negl(λ),

where experiment ExpSFBlnd A
ΠBS

is described in Figure 6.1, and the probability is taken
over the random choices of all probabilistic algorithms.

Camenisch et al. [CNs07] constructed the adversary A in Definition 25 to work in
three modes: find, issue, and guess. The find mode allows A to identify and set up the
necessary inputs for the attack, such as generating the key pair and messages. In the
issue mode, A interacts with the honest user algorithm U to gather further information
for outputting the signatures σ. Finally, the guess mode involves the adversary making
its final guess about the value of bit b. Our revised version of selective-failure blindness
for blind conditional signatures in Figure 6.2 does not use these modes but follows a
different interaction structure.

In the ExpSFBlnd A
ΠBS

(λ) experiment in Figure 6.1 instead of simply returning ⊥
in case a signature execution fails, the adversarial signer is additionally given the
information which instance was aborted. A scheme is selective-failure blind if an

37

6 Enhanced Security Definitions

Figure 6.1: Selective failure blindness experiment.

ExpSFBlnd A
ΠBS

(λ)
1 : (pkBS , m0, m1, βfind)← A(find, 1λ)
2 : b← {0, 1}

3 : βissue ← A〈·,U(pkBS ,mb)〉1,〈·,U(pkBS ,m1−b)〉1(issue, βfind)
4 : and let σb, σ1−b denote the (possibly undefined) local outputs
5 : of U(pkBS , mb) resp. U(pkBS , m1−b).
6 : define answer as:
7 : left if only the first execution has failed,
8 : right if only the second execution has failed,
9 : both if both executions have failed,

10 : and (σb, σ1−b) otherwise.
11 : b∗ ← A(guess, answer, βissue)
12 : return 1 iff b = b∗

adversarial signer cannot determine with a probability significantly greater than 1/2
which signature belongs to which message.

Definition 26 (Selective-Failure Blindness). A blind conditional signature scheme
ΠBCS is selective-failure blind if it is strongly unforgeable according to Definition 10
and for every PPT adversary A there exists a negligible function negl(λ) such that for
every λ ∈ N

Pr
[
ExpSFBlnd A

ΠBCS
(λ) = 1

]
≤ 1/2 + negl(λ),

where experiment ExpSFBlnd A
ΠBCS

is described in Figure 6.2, and the probability is taken
over the random choices of all probabilistic algorithms.

Building on this concept, we present an adapted definition for a selective-failure
blind conditional signature scheme in Definition 26. With this improved definition,
the adversary cannot distinguish between two signatures, even if it knows which of
the two puzzle solver executions failed. More precisely, rather than simply returning
⊥ when any of the puzzle solver PSolver executions fail, the experiment identifies
and returns the specific executions that failed. Furthermore, when one of the puzzle
promise PPromise executions fails, the protocol aborts immediately. This is necessary
since otherwise, it becomes trivial for any adversary to link the PPromise and PSolver
executions and win the game. We want to stress here that in a real-world scenario,
an adversarial Hub would learn the input to the PSolver protocol (vkA, mAH) only
after a successful execution of the corresponding PPromise protocol. Therefore, to
break selective-failure blindness, the adversary would need to reduce the anonymity
set to one and abort all other PPromise executions in an epoch. Since the information
from the input of the PPromise protocol alone does not allow the Hub to make an

38

6.1 Selective-Failure Blindness

Figure 6.2: Selective failure blindness for blind conditional signatures experiment.

ExpSFBlnd A
ΠBCS

(λ)
1 : (ẽk, vkH

0 , vkH
1 , (mHB,0, mAH,0), (mHB,1, mAH,1))← A(1λ)

2 : (vkA
0 , skA

0)← KGen(1λ)
3 : (vkA

1 , skA
1)← KGen(1λ)

4 : τ0 ← PPromise
〈
A(vkA

0 , vkA
1), B(ẽk, vkH

0 , mHB,0)
〉

5 : τ1 ← PPromise
〈
A(vkA

0 , vkA
1), B(ẽk, vkH

1 , mHB,1)
〉

6 : if (τ0 =⊥) ∨ (τ1 =⊥) then return 0
7 : b← {0, 1}

8 : (σ∗
0, s0)← PSolver

〈
A

(
skA

0 , ẽk, mAH,0, τ0⊕b

)
,A

〉
9 : (σ∗

1, s1)← PSolver
〈
A

(
skA

1 , ẽk, mAH,1, τ1⊕b

)
,A

〉
10 : if (σ∗

0 =⊥) ∨ (σ∗
1 =⊥) define answer as:

11 : left if only the first execution failed,
12 : right if only the second execution failed,
13 : both if both executions failed.
14 : else
15 : σ0⊕b ← Open(τ0⊕b, s0)
16 : σ1⊕b ← Open(τ1⊕b, s1)
17 : answer = (σ0, σ1)
18 : b′ ← A(answer)
19 : return (b = b′)

informed choice of which execution to abort, we can ignore this scenario and hence let
the experiment abort in Line 6.

39

7 Blind Conditional Signatures
Construction

In this chapter, we will give our construction of a provably secure blind conditional
signature scheme in the random oracle model. Our construction is a variation of the
original A2L+ protocol by Glaeser et al. [GMM+22]. The diverging parts are marked.
The send and receive statements indicate secure and private communication between
the parties. It is assumed that the public parameters are available to all participants.
Furthermore, the encryption key ek of the Hub, as well as all verification keys vk, are
publicly known. In case the blind conditional signature scheme is used as a coin-mixing
protocol, we further assume that the underlying blockchain supports time locks. In
this scenario, the messages mAH and mHB act as transaction messages. To ensure
that the coins contained in these transaction messages are not spent before the other
party completes the pre-signatures, we assume these coins are locked for the duration
of the protocol execution. To solve this, Glaeser et al. [GMM+22] require a payment
channel setup before the protocol starts. We leave this open to choose the preferred
method of implementation, as payment channels may not be available on all blockchains
with time-locking capabilities. Moreover, using a constant amount of coins for each
transaction is necessary as it otherwise becomes trivial to link two payments and
break blindness. Similar to the original A2L+ protocol, we further assume that the
protocol runs in epochs, where each epoch comprises three phases corresponding to
the PPromise, PSolver, and Open executions, respectively. To protect against griefing
attacks for coin-mixing protocols, the registration protocol described in Section 3.3.3
must be executed beforehand.

In Construction 3, we give the construction for our revised A2L+ blind conditional
signature protocol and claim the security thereof in Theorem 1. We defer the formal
security proofs to Chapter 8.

Construction 3 (A2L+ Blind Conditional Signature Scheme). We assume the exis-
tence of group description parameter gp = (G, g, q). Let Rel be a canonical hard relation
with PPT sampling algorithm GenR(1λ). Let ΠRP = (PSetup, PGen, PSolve, PRand) be a
secure randomizable puzzle scheme, NIZK = (Setup, P, V, Rand) be a sound randomizable
non-interactive zero-knowledge proof system for the language LNIZK := {(ek, Y, c)|∃y ∈
Zp : gy = Y ∧ c = ΠE.Enc(ek, y)}, and ΠAS = (pSign, Adapt, pVrf , Extract) be a se-
cure adaptor signature scheme. We define the blind conditional signature scheme
A2L+ = (PPromise, PSolver, Open) in Figure 7.1, Figure 7.2, and Figure 7.3 respec-
tively.

40

7.1 Puzzle Promise Protocol

Theorem 1. We assume the existence of group description parameter gp = (G, g, q).
Let Rel be a canonical hard relation with PPT sampling algorithm GenR(1λ). Let ΠRP
be a secure randomizable puzzle scheme according to Construction 1 that leverages an
IND-CCA-secure LOE scheme ΠE. Let NIZK be a sound randomizable non-interactive
zero-knowledge proof system, and let ΠAS be a secure adaptor signature scheme that
achieves pre-signature correctness, extractability, unique extractability, unlinkability,
pre-verify soundness, and pre-signature adaptability. Assuming the hardness of the
OMDL, the A2L+ protocol is a secure blind conditional signature scheme.

7.1 Puzzle Promise Protocol

In the puzzle promise protocol PPromise, we add a randomized NIZK π′ to the output.
After verifying the NIZK π and pre-signature σ̃ that the Hub sent, the randomizable
puzzle returns a randomized version of the puzzle Z ′ alongside the randomization factor
r. We use r to run the Rand algorithm on the NIZK π and receive a randomized version
π′, which we add at the end of the output τ . π′ proofs that the randomized ciphertext
c′ contained in the puzzle Z ′ encrypts a valid secret y′ to the randomized statement Y ′

under the encryption key of the Hub ekH . The PPromise protocol is formally described
in Figure 7.1.

Figure 7.1: Puzzle promise protocol.

Public Parameters: group description pp := (G, g, q), message mHB

PPromise〈H(d̃k, skH , mHB), ·〉
1 : (Y, y)← Rel.GenR(1λ)
2 : Z ← ΠRP.PGen((pp, ẽk), y)
3 : parse (Y, c) := Z

4 : π ← NIZK.P((ẽk, Y, c), y)
5 : σ̃HB ← ΠAS.pSign(skH , mHB, Y)
6 : send (Z, π, σ̃HB)
7 : return ⊥

PPromise〈·, B(ẽk, vkH , mHB)〉
1 : receive (Z, π, σ̃HB)
2 : if NIZK.V((ẽk, Z), π) 6= 1 then
3 : return ⊥
4 : parse (Y, c) := Z

5 : if ΠAS.pVrf (vkH , mHB, Y, σ̃HB) 6= 1
6 : then return ⊥
7 : (Z ′, r)← ΠRP.PRand((pp, ẽk), Z)
8 : π′ ← NIZK.Rand((ẽk, Z), π, r)
9 : τ := (r, mHB, σ̃HB, Z ′, π′)

10 : return τ

41

7 Blind Conditional Signatures Construction

7.2 Puzzle Solver Protocol
In the puzzle solver protocol PSolver, Alice additionally checks if the randomized NIZK
π′ is valid and aborts the execution by returning ⊥ in case it is not. As we pointed
out in Section 5.1.2, this additional check protects Alice against collusion between the
Hub and Bob. Apart from that, we argue that Alice should be able to prove in some
way the validity of the puzzle she receives before initiating the puzzle solver protocol
since she also locks her coins in the pre-signature σ̃AH based on the statement Y ′′. The
randomized NIZK π′ allows Alice to verify that the Hub can solve the randomized puzzle
Z ′ only by using his decryption key d̃k as the trapdoor. This holds since π′ proofs that
the ciphertext c′ encrypts a valid solution to the statement Y ′ contained in Z ′ under
the public encryption key ẽk of the Hub. As already mentioned in Section 5.1.2, our
Construction 1 of a randomizable puzzle scheme requires the public encryption key ẽk
used to generate the original puzzle Z to randomize the puzzle in the PRand algorithm.
The randomized puzzle Z ′′ otherwise can not be solved by using the decryption key of
the Hub d̃k as the trapdoor. Hence, when using such a ΠRP scheme and the ẽk that
Alice uses in the PRand algorithm is different from the one used by the Hub to generate
the original puzzle Z, the Hub can not solve the puzzle Z ′′ and the PSolver execution
will fail. Since not all randomizable puzzle schemes satisfy this inherent property and
to protect Alice from unnecessarily locking her coins, we explicitly add the randomized
NIZK π′ into our construction. The PSolver protocol is formally described in Figure 7.2.

Figure 7.2: Puzzle solver protocol.

Public Parameters: group description pp := (G, g, q), message mAH

PSolver〈A(skA, ẽk, mAH , τ), ·〉
1 : parse τ := (·, ·, ·, Z ′, π′)
2 : if NIZK.V((ẽk, Z ′), π′) 6= 1 then
3 : return ⊥
4 : (Z ′′, r′)← ΠRP.PRand((pp, ẽk), Z ′)
5 : parse (Y ′′, c′′) := Z ′′

6 : σ̃AH ← ΠAS.pSign(skA, mAH , Y ′′)
7 : send (Z ′′, σ̃AH)
8 : receive σAH

9 : y′′ ← ΠAS.Extract(vkA, σ̃AH , σAH , Y ′′)
10 : if y′′ =⊥ then return ⊥
11 : y′ := y′′ − r′

12 : return (σAH , y′)

PSolver〈·, H(d̃k, vkA, mAH)〉
1 : receive (Z ′′, σ̃AH)
2 : y′′ ← ΠRP.PSolve(d̃k, Z ′′)
3 : if ΠAS.pVrf (vkA, mAH , Y ′′, σ̃AH) 6= 1
4 : ∨ gy′′ 6= Y ′′ then return ⊥
5 : σAH ← ΠAS.Adapt(vkA, σ̃AH , y′′)
6 : send σAH

7 : return σAH

42

7.3 Open Algorithm

7.3 Open Algorithm
The Open algorithm stays unchanged. We restate it in Figure 7.3 for completeness.
On input the puzzle τ and the witness y′ output by Alice after successful completion of
the PSolver protocol, we derandomize y′ to a valid solution y of the original statement
Y embedded in the pre-signature σ̃HB. Finally, the Adapt algorithm is executed to
receive a valid full signature on the message mHB.

Figure 7.3: Open algorithm.

Open(τ, y′)
1 : parse τ := (r, ·, σ̃, ·, ·)
2 : y := y′ − r

3 : σ := ΠAS.Adapt(vkH , σ̃, y)
4 : return σ

43

8 Security Analysis
In this chapter, we conduct the security analysis of blind conditional signatures by
proofing Theorem 1. We argue about each property separately, using game-based
proofs.

8.1 Selective-Failure Blindness
Lemma 1 (Selective-Failure Blindness). We assume the existence of group description
parameter gp = (G, g, q). Let Rel be a canonical hard relation with PPT sampling
algorithm GenR(1λ). Let ΠRP be a secure randomizable puzzle scheme according to
Construction 1 that leverages an IND-CCA-secure LOE scheme ΠE. Let NIZK be a
sound randomizable non-interactive zero-knowledge proof system, and let ΠAS be a
secure adaptor signature scheme that achieves pre-signature correctness, extractability,
unique extractability, unlinkability, pre-verify soundness, and pre-signature adaptability.
Assuming the hardness of the OMDL, the A2L+ protocol satisfies selective-failure
blindness (c.f. Definition 25) in the LOE model.

Proof of Lemma 1. We prove Lemma 1 by contradiction, assuming that there exists a
PPT adversary A that wins the ExpSFBlnd A

ΠBCS
experiment with non-negligible proba-

bility. In the following, we will perform a series of game hops with negligible transitions,
starting from the original game ExpSFBlnd A

ΠBCS
. Eventually, we will demonstrate that

under the stated assumptions, no PPT adversary can succeed with probability signifi-
cantly larger than the random choice in the final game, thus contradicting the initial
assumption.

Game G0: The first game G0 is the original ExpSFBlnd A
ΠBCS

game in Figure 4.1. Since
G0 simulates the game ExpSFBlnd A

ΠBCS
perfectly, it holds that Pr

[
ExpSFBlnd A

ΠBCS
= 1

]
=

Pr[G0(λ) = 1]. A formal description of the game G0 is given in Figure 8.1.

Game G1: In the second game, we exchange the executions of the Open algorithm
with an oracle OOpen that always returns the adapted signature to the respective pre-
signature contained in the puzzle τ . The OOpen oracle generates all statement/witness
pairs in the puzzle promise PPromise protocol and therefore knows all witnesses to the
embedded statements. A formal description of the game G1 is given in Figure 8.2.

Claim 1. G1 can only be distinguished from G0 if the secrets used to call the Open
algorithms differ from the witnesses used during the puzzle creation in the PSolver

44

8.1 Selective-Failure Blindness

Figure 8.1: The first blindness game G0(λ).

G0(λ)
1 : (ẽk, vkH

0 , vkH
1 , (mHB,0, mAH,0), (mHB,1, mAH,1))← A(1λ)

2 : (vkA
0 , skA

0)← KGen(1λ)
3 : (vkA

1 , skA
1)← KGen(1λ)

4 : τ0 ← PPromise
〈
A(vkA

0 , vkA
1), B(ẽk, vkH

0 , mHB,0)
〉

5 : τ1 ← PPromise
〈
A(vkA

0 , vkA
1), B(ẽk, vkH

1 , mHB,1)
〉

6 : if (τ0 =⊥) ∨ (τ1 =⊥) then return 0
7 : b← {0, 1}

8 : (σ∗
0, s0)← PSolver

〈
A

(
skA

0 , ẽk, mAH,0, τ0⊕b

)
,A

〉
9 : (σ∗

1, s1)← PSolver
〈
A

(
skA

1 , ẽk, mAH,1, τ1⊕b

)
,A

〉
10 : if (σ∗

0 =⊥) ∨ (σ∗
1 =⊥) define answer as:

11 : left if only the first execution failed,
12 : right if only the second execution failed,
13 : both if both executions failed.
14 : else
15 : σ0⊕b ← Open(τ0⊕b, s0)
16 : σ1⊕b ← Open(τ1⊕b, s1)
17 : answer = (σ0, σ1)
18 : b′ ← A(answer)
19 : return (b = b′)

execution. Let BreakUniqueExtractability be the event where the secrets output by the PSolver
algorithm differ from the witnesses embedded in the ciphertext of the puzzle τ . Then,
the adversary A returned a valid signature σ∗

i that extracts to more than one witness.
If BreakUniqueExtractability happens, we can build a reduction that breaks unique extractabil-
ity of the underlying adaptor signature scheme ΠAS. Therefore, BreakUniqueExtractability
can occur only with negligible probability. Since Pr[G1 ∧ ¬BreakUniqueExtractability] =
Pr[G0 ∧ ¬BreakUniqueExtractability] and the event BreakUniqueExtractability occurring is negli-
gible, G0 and G1 need to be indistinguishable. It holds that Pr[G1] ≈ Pr[G0].

Proof of Claim 1. From Line 10 in the PSolver protocol, it follows that for any successful
execution of the PSolver protocol, the secrets s0, s1 are valid witnesses to the embedded
statements. The embedded randomized statements used in the puzzle τ , in turn,
have been generated by calculating a group multiplication on the original statement
Y ′ = Y · gr. Therefore, each valid witness to Y ′ can be derandomized to a valid
witness of Y with the help of the randomization factor y = y′ − r, which is part of

45

8 Security Analysis

Figure 8.2: The second blindness game G1(λ). The OOpen oracle generates all state-
ment/witness pairs during the PPromise protocol and therefore knows all
witnesses to statements generated during PPromise executions.

G1(λ)
1 : (ẽk, vkH

0 , vkH
1 , (mHB,0, mAH,0), (mHB,1, mAH,1))← A(1λ)

2 : (vkA
0 , skA

0)← KGen(1λ)
3 : (vkA

1 , skA
1)← KGen(1λ)

4 : τ0 ← PPromise
〈
A(vkA

0 , vkA
1), B(ẽk, vkH

0 , mHB,0)
〉

5 : τ1 ← PPromise
〈
A(vkA

0 , vkA
1), B(ẽk, vkH

1 , mHB,1)
〉

6 : if (τ0 =⊥) ∨ (τ1 =⊥) then return 0
7 : b← {0, 1}

8 : (σ∗
0, s0)← PSolver

〈
A

(
skA

0 , ẽk, mAH,0, τ0⊕b

)
,A

〉
9 : (σ∗

1, s1)← PSolver
〈
A

(
skA

1 , ẽk, mAH,1, τ1⊕b

)
,A

〉
10 : if (σ∗

0 =⊥) ∨ (σ∗
1 =⊥) define answer as:

11 : left if only the first execution failed,
12 : right if only the second execution failed,
13 : both if both executions failed.
14 : else
15 : σ0⊕b ← OOpen(τ0⊕b)
16 : σ1⊕b ← OOpen(τ1⊕b)
17 : answer = (σ0, σ1)
18 : b′ ← A(answer)
19 : return (b = b′)

OOpen(τ)
1 : parse τ := (r, m, ·, (Y ′, ·), ·); Y ′ := gy+r

2 : σ ← ΠAS.Open(vk, m, y)
3 : return σ

the puzzle τ . The game only enters Lines 15 to 17 if both signatures σ∗
0, σ∗

1 are valid,
meaning the PSolver protocol was completed successfully. According to Construction 3,
the PSolver algorithm only completes successfully if the two secrets s0, s1 are valid
witnesses to the embedded statements. Therefore, the secrets used to call the Open
algorithm must also be valid witnesses. It follows that from the view of A, G0 and
G1 can only be distinguished if A returns a valid signature σ∗ in the PSolver protocol

46

8.1 Selective-Failure Blindness

that extracts to a valid witness, which is different from the witness used by the OOpen
oracle and therefore different from the witness used during puzzle creation in the
PPromise executions.

We now give a reduction that uses A from game G1 to break unique extractability
of the underlying adaptor signature scheme ΠAS. More specifically, a reduction that
uses the PSolver execution in G1. The reduction receives as input a set of verification
keys vki and a pSign oracle. It forwards vki and provides an OPS oracle to A. On each
request from A to the OPS oracle, the reduction samples a statement/witness pair
(Y, y) and queries the pSign oracle to receive a valid pre-signature σ̃ under a verification
key vki. Additionally, the OPS oracle returns the witness y encrypted under the
encryption key ẽk of the adversary A. The reduction now start A on input vki. First,
A runs the PPromise protocol honestly, outputting a valid puzzle τ . Then, during the
PSolver protocol A queries the OPS oracle arbitrarily many times on messages mi of its
choice to receive valid pre-signatures σ̃i on these messages mi alongside the encrypted
witnesses ci. Since we assume in Claim 1 that the event BreakUniqueExtractability occurs
with non-negligible probability, A eventually outputs a valid full signature σ′ as the
output of the PSolver protocol for at least one of the pre-signatures σ̃i that extracts to
a valid witness y′ that is different from the witness y in the ciphertext c from the OPS
oracle. Furthermore, the adversary A decrypts the ciphertext c using its decryption key
d̃k to receive the original witness y and runs the adapt algorithm ΠAS.Adapt to receive a
second full signature σ on the same pre-signature σ̃. The reduction finally outputs the
two signatures (σ′, σ) to break unique extractability as in Definition 15 of the adaptor
signature scheme ΠAS, since the two signatures (σ′, σ) are valid, distinct, and extract to
different witnesses using the same valid pre-signature σ̃. Furthermore, by assumption,
A runs in polynomial time, and the algorithms used to simulate the OPS oracle are all
PPT algorithms. Thus, the reduction is efficient and contradicts unique extractability
of the adaptor signature scheme ΠAS. Hence, the event BreakUniqueExtractability can only
occur with negligible probability. It holds, that G0 and G1 are indistinguishable.

Game G2: In the third game, we replace the randomization of the randomizable
puzzle with a freshly sampled instance. A formal description of the game G2 is given
in Figure 8.3.

Claim 2. From the view of the adversary A, the randomized version of the puzzle that
the PSolver algorithm receives as input looks like a freshly sampled puzzle. Therefore,
randomizing a valid puzzle of the ΠRP scheme is the same as sampling a new instance
from the view of A, and any distinguishing advantage necessarily corresponds to the
case in which the adversary is given an invalid puzzle during the PSolver execution.
Let BreakSoundness be the event where the adversary receives an invalid puzzle in the
PSolver execution. Then, we can build a reduction that breaks the soundness of the
NIZK proof system. Hence, BreakSoundness can only happen with negligible probability.
Since Pr[G2 ∧ ¬BreakSoundness] = Pr[G1 ∧ ¬BreakSoundness] the two games G1 and G2 need
to be indistinguishable. It holds that Pr[G1] ≈ Pr[G2].

47

8 Security Analysis

Figure 8.3: The third blindness game G2(λ). The OOpen oracle generates all state-
ment/witness pairs during the PPromise protocol and therefore knows all
witnesses to statements generated during PPromise executions.

G2(λ)
1 : (ẽk, vkH

0 , vkH
1 , (mHB,0, mAH,0), (mHB,1, mAH,1))← A(1λ)

2 : (vkA
0 , skA

0)← KGen(1λ)
3 : (vkA

1 , skA
1)← KGen(1λ)

4 : τ0 ← PPromise
〈
A(vkA

0 , vkA
1), B(ẽk, vkH

0 , mHB,0)
〉

5 : τ1 ← PPromise
〈
A(vkA

0 , vkA
1), B(ẽk, vkH

1 , mHB,1)
〉

6 : if (τ0 =⊥) ∨ (τ1 =⊥) then return 0
7 : (Y ′

0 , s0), (Y ′
1 , s1)← Rel.GenR(1λ)

8 : Z ′
0 ← ΠRP.PGen((pp, ẽk), s0)

9 : Z ′
1 ← ΠRP.PGen((pp, ẽk), s1)

10 : π′
0 ← NIZK.P((ẽk, Z ′

0), s0)
11 : π′

1 ← NIZK.P((ẽk, Z ′
1), s1)

12 : τ ′
0 := (·, ·, ·, ·, Z ′

0, π′
0)

13 : τ ′
1 := (·, ·, ·, ·, Z ′

1, π′
1)

14 : b← {0, 1}

15 : (σ∗
0, s0)← PSolver

〈
A

(
skA

0 , ẽk, mAH,0, τ ′
0⊕b

)
,A

〉
16 : (σ∗

1, s1)← PSolver
〈
A

(
skA

1 , ẽk, mAH,1, τ ′
1⊕b

)
,A

〉
17 : if (σ∗

0 =⊥) ∨ (σ∗
1 =⊥) define answer as:

18 : left if only the first execution failed,
19 : right if only the second execution failed,
20 : both if both executions failed.
21 : else
22 : σ0⊕b ← OOpen(τ0⊕b)
23 : σ1⊕b ← OOpen(τ1⊕b)
24 : answer = (σ0, σ1)
25 : b′ ← A(answer)
26 : return (b = b′)

OOpen(τ)
1 : parse τ := (r, m, ·, (Y ′, ·), ·); Y ′ := gy+r

2 : σ ← ΠAS.Open(vk, m, y)
3 : return σ

48

8.1 Selective-Failure Blindness

Proof of Claim 2. In the puzzle solver protocol PSolver in Line 4, the puzzle gets
rerandomized using the PRand algorithm of the randomizable puzzle scheme ΠRP before
it gets sent to the adversary A. According to Construction 1 this is done by a group
multiplication on the statement Y ′′ = Y ′ · gr′ of the hard relation that is embedded
in τ and by multiplying the encryption of the witness with the encryption of the
uniform element under the encryption key of the Hub c′′ = c′ · ΠE.Enc(ẽk, r′). Since
r′ is unknown to A, the resulting rerandomized puzzle Z ′′ therefore looks similar to
a freshly sampled puzzle given that the original ciphertext c from the adversary A is
well-formed and decrypts to a valid witness for the embedded statement Y ′′. Alice
verifies the validity of the puzzle she receives from Bob by verifying an NIZK during
the PSolver execution before rerandomizing the puzzle. Hence, any distinguishing
advantage necessarily implies a violation of the soundness property of the NIZK. We
now give a reduction that uses A from G2 to break soundness of the NIZK proof
system. The language of the NIZK proof system used in the A2L+ protocol is defined
as LNIZK := {(ek, Y, c)|∃y ∈ Zp : gy = Y ∧ c = ΠE.Enc(ek, y)}. The reduction generates
a set of key pairs (vki, ski) and runs A in input vki. The adversary A first generates a
key pair (ẽk, d̃k). Then A chooses a random statement witness pair (Y, y) during the
PPromise protocol, encrypts y in the ciphertext c under its encryption key ẽk, such that
gΠE.Dec(d̃k,c) 6= Y , and creates a proof π ← NIZK.P((ẽk, Y, c), y). The reduction finally
outputs the proof π. Since we assume in Claim 2 that BreakSoundness occurs and Alice
accepts an invalid puzzle in the PSolver protocol, π is a valid proof with non-negligible
probability, such that NIZK.V((ẽk, Y, c), π) = 1. By assumption, A is a PPT algorithm,
and the reduction is efficient. This reduction violates the soundness property of the
NIZK proof system because (ẽk, Y, c) /∈ LNIZK. Thus, BreakSoundness can only happen
with negligible probability, and it holds that Pr[G1] ≈ Pr[G2].

Claim 3. There exists no polynomially bound adversary that wins game G2 with
probability significantly larger than 1/2, and it holds that

Pr[G2 = 1] ≤ 1/2 + negl(λ).

Proof of Claim 3. During the PSolver executions in G2, the adversary is given valid
pre-signatures on the messages mAH,0 and mAH,1 of its choice signed under the signing
keys skA

0 , skA
1 , alongside freshly sampled puzzles. Since the two puzzles have been

generated by sampling a witness uniformly at random, the adversary has no way of
distinguishing which bit b has been used with probability significantly larger than the
random choice. Aborting any of the two PSolver executions will not return any further
information. In case the protocol executes successfully, the adversary is given valid full
signatures on the pre-signatures contained in τ0, τ1 of the PPromise protocol. These
full signatures are independent of the puzzles used in the PSolver protocol. Hence, the
adversary can not learn any distinguishing information in G2, and the two cases of
b = 0 and b = 1 are indistinguishable.

We can now use Claim 3 to complete our proof of Lemma 1. Through a series of game
hops, we showed that under the stated assumptions, the probability of winning the

49

8 Security Analysis

blindness experiment ExpSFBlnd A
ΠBCS

is indistinguishable to the probability of winning
the final game G2. In Claim 3 we furthermore proved, that the two cases b = 0 and
b = 1 are indistinguishable, and it holds that

Pr
[
ExpSFBlnd A

ΠBCS
= 1

]
≤ Pr[G2 = 1] + negl(λ) ≤ 1/2 + negl(λ).

From the assumption that there exists a PPT adversary A that wins the original
blindness experiment ExpSFBlnd A

ΠBCS
with probability significantly larger than 1/2,

it follows that A also wins G2 with probability significantly larger than 1/2. This
contradicts Claim 3, and thus, no such efficient adversary can exist, and A2L+ satisfies
selective-failure blindness.

8.2 Unlockability
Lemma 2 (Unlockability). We assume the existence of group description parameter
gp = (G, g, q). Let Rel be a canonical hard relation with PPT sampling algorithm
GenR(1λ). Let ΠRP be a secure randomizable puzzle scheme according to Construction 1
that leverages an IND-CCA-secure LOE scheme ΠE. Let NIZK be a sound randomizable
non-interactive zero-knowledge proof system, and let ΠAS be a secure adaptor signature
scheme that achieves pre-signature correctness, extractability, unique extractability, un-
linkability, pre-verify soundness, and pre-signature adaptability. Assuming the hardness
of the OMDL, the A2L+ protocol satisfies unlockability (c.f. Definition 22) in the LOE
model.

Proof of Lemma 2. We prove this lemma by showing through a series of game hops
with negligible transitions that, given the stated assumptions, there can not exist a
PPT adversary winning the ExpUnlock A

ΠBCS
game with probability significantly larger

than negligible. We do this by introducing several statements under which the game
aborts and showing that the probability of each event happening must be negligible.
Finally, we conclude the proof by contradiction, as no PPT adversary can exist with
non-negligible success probability in the final game.

Game G0: The first game G0 is the original ExpUnlock A
ΠBCS

game in Figure 4.2. G0

simulates ExpUnlock A
ΠBCS

perfectly, and it therefore holds that Pr
[
ExpUnlock A

ΠBCS
= 1

]
=

Pr[G0 = 1]. The formal description of G0 is given in Figure 8.4.

Game G1: The second game G1 differs from game G0 when it aborts in Line 6 instead
of returning the winning condition. This event only occurs when the adversary outputs
a valid signature σ̂ under Alice’s verification key vkA while the PPromise algorithm
returns ⊥, effectively returning a valid forgery. This game hop does not differ from
ExpUnforg A

ΠBCS
if this event does not occur. The formal description of G1 is given in

Figure 8.5.

50

8.2 Unlockability

Figure 8.4: The first unlockability game G0(λ).

G0(λ)
1 : (ẽk, vkH , mHB, mAH)← A(1λ)
2 : (vkA, skA)← KGen(1λ)

3 : τ ← PPromise
〈
A(vkA), B(ẽk, vkH , mHB)

〉
4 : if τ =⊥
5 : (σ̂, m̂)← A
6 : b0 := (Vf(vkA, σ̂, m̂) = 1)
7 : if τ 6=⊥

8 : (σ∗, s)← PSolver
〈
A

(
skA, ẽk, mAH , τ

)
,A

〉
9 : (σ̂, m̂)← A

10 : b1 := (Vf(vkA, σ̂, m̂) = 1) ∧ (m̂ 6= mAH))
11 : b2 := (Vf(vkA, σ∗, mAH) = 1)
12 : b3 := (Vf(vkH , mHB, Open(τ, s)) 6= 1)
13 : return b0 ∨ b1 ∨ (b2 ∧ b3)

Claim 4. Let BreakExtract be the event in Line 6, where G1 aborts. Then, the adversary
A found a valid signature forgery σ̂ on any message m̂ under the verification key vkA.
If BreakExtract happens, then we can build a reduction that can break extractability of
the underlying adaptor signature scheme ΠAS. Therefore, BreakExtract can occur only
with negligible probability. Since Pr[G1 ∧ ¬BreakExtract] = Pr[G0 ∧ ¬BreakExtract] and the
event BreakExtract occurring is negligible, G0 and G1 need to be indistinguishable. It holds
that Pr[G1] ≈ Pr[G0].

Proof of Claim 4. We prove Claim 4 with a reduction that uses A from game G1 to
break extractability of the underlying adaptor signature scheme ΠAS. The reduction is
given as input, a verification key vkA, and has access to a pSign oracle that, on input, a
message m and statement Y , returns a pre-signature σ̃ on m under the verification key
vkA as in Definition 14. The pSign oracle is efficient, as it follows the PPT pre-signing
algorithm ΠAS.pSign. The reduction forwards the pSign oracle to A and runs A on
input vkA. First A now generates a key pair (vkH , skH) using the ΠAS.KGen algorithm
and chooses arbitrary messages mAH and mHB. The adversary A then returns an
invalid pre-signature on the message mHB under its own singing key skH during the
PPromise execution in Line 3 of G1. This leads to an invalid puzzle τ =⊥ as the output
of the PPromise protocol. Since we assume by contradiction in Claim 4 that BreakExtract
happens with non-negligible probability, A eventually outputs a valid signature σ̂ on
any message m̂ under Alice’s verification key vkA without querying the pSign oracle.
The reduction can then use the output σ̂ to break extractability of the underlying

51

8 Security Analysis

Figure 8.5: The second unlockability game G1(λ).

G1(λ)
1 : (ẽk, vkH , mHB, mAH)← A(1λ)
2 : (vkA, skA)← KGen(1λ)

3 : τ ← PPromise
〈
A(vkA), B(ẽk, vkH , mHB)

〉
4 : if τ =⊥
5 : (σ̂, m̂)← A
6 : if (Vf(vkA, σ̂, m̂) = 1) then abort
7 : if τ 6=⊥

8 : (σ∗, s)← PSolver
〈
A

(
skA, ẽk, mAH , τ

)
,A

〉
9 : (σ̂, m̂)← A

10 : b1 := (Vf(vkA, σ̂, m̂) = 1) ∧ (m̂ 6= mAH))
11 : b2 := (Vf(vkA, σ∗, mAH) = 1)
12 : b3 := (Vf(vkH , mHB, Open(τ, s)) 6= 1)
13 : return b1 ∨ (b2 ∧ b3)

adaptor signature scheme ΠAS with non-negligible probability, since A outputs a valid
signature without access to a Sign oracle (Lines 5 and 6 in Figure 2.4) and without
outputting a valid pre-signature that allows extracting a valid witness to a statement
Y ∈ Rel (Line 8 in Figure 2.4). Furthermore, we assume that A runs in polynomial
time, and the reduction is therefore efficient. Thus, BreakExtract can only happen with
negligible probability, and the two games G1 and G0 are indistinguishable.

Game G2: The game G2 differs from G1 when it aborts in Line 10 instead of returning
the winning condition. This event only occurs when the adversary outputs a valid
signature for a message other than mAH used in the PSolver protocol. As in game
G1, this can only occur if the adversary finds a valid forgery and therefore breaks
extractability of ΠAS. If this event does not occur, G2 does not differ from G1. The
formal description of G2 is given in Figure 8.6.

Claim 5. Let BreakExtract be the event in Line 10, where G2 aborts. Then the adversary
A found a valid signature forgery σ̂ under the verification key vkA on a message m̂
that is different from mAH . If BreakExtract happens, then we can build a reduction that
can break extractability of the underlying adaptor signature scheme ΠAS. Hence, the
probability of BreakExtract occurring needs to be negligible. Since Pr[G2 ∧ ¬BreakExtract] =
Pr[G1 ∧ ¬BreakExtract] and the event BreakExtract occurring is negligible, G1 and G2 need
to be indistinguishable, and it holds that Pr[G2] ≈ Pr[G1].

52

8.2 Unlockability

Figure 8.6: The third unlockability game G2(λ).

G2(λ)
1 : (ẽk, vkH , mHB, mAH)← A(1λ)
2 : (vkA, skA)← KGen(1λ)

3 : τ ← PPromise
〈
A(vkA), B(ẽk, vkH , mHB)

〉
4 : if τ =⊥
5 : (σ̂, m̂)← A
6 : if (Vf(vkA, σ̂, m̂) = 1) then abort
7 : if τ 6=⊥

8 : (σ∗, s)← PSolver
〈
A

(
skA, ẽk, mAH , τ

)
,A

〉
9 : (σ̂, m̂)← A

10 : if (Vf(vkA, σ̂, m̂) = 1) ∧ (m̂ 6= mAH)) then abort
11 : b2 := (Vf(vkA, σ∗, mAH) = 1)
12 : b3 := (Vf(vkH , mHB, Open(τ, s)) 6= 1)
13 : return (b2 ∧ b3)

Proof of Claim 5. As in proof of Claim 4, we prove Claim 5 with a reduction that uses
A from game G2 to break extractability of the underlying adaptor signature scheme
ΠAS. The reduction is given as input, a verification key vkA, and has access to a pSign
oracle that, on input, a message m and statement Y , returns a pre-signature σ̃ on m
under the verification key vkA as in Definition 14. The pSign oracle is efficient, as it
follows the PPT pre-signing algorithm ΠAS.pSign. The reduction forwards the pSign
oracle to A and runs A on input vkA. The adversary A now engages in the PPromise
protocol to output a valid puzzle τ . Then during the PSolver execution in Line 8 of G2
the reduction parses the embedded statement from the puzzle parse (Y ′′, c′′) := Z ′′

contained in τ , and queries the pSign oracle on the message mAH and statement Y ′′ to
receive a valid pre-signature σ̃AH under the verification key vkA. The reduction sends
the pre-signature σ̃AH alongside the puzzle Z ′′ to A and completes the PSolver protocol
with A. Since we assume in Claim 5 that BreakExtract occurs with non-negligible
probability, the adversary A eventually outputs a valid signature σ̂ for a message
m̂ under Alice’s verification key vkA, such that m̂ 6= mAH . Finally, the reduction
uses the signature σ̂ to win the extractability experiment of the adaptor signature
scheme ΠAS as defined in Definition 14. More precisely, σ̂ is a valid signature on a
previously not seen message m̂, without producing a corresponding pre-signature σ̂
or an extractable witness. Since the pSign oracle and A run in polynomial time, the
reduction is efficient and breaks extractability with non-negligible probability by the
assumption of Claim 5. Thus, it holds that BreakExtract can only happen with negligible
probability and Pr[G2] ≈ Pr[G1].

53

8 Security Analysis

Figure 8.7: The fourth unlockability game G3(λ).

G3(λ)
1 : (ẽk, vkH , mHB, mAH)← A(1λ)
2 : (vkA, skA)← KGen(1λ)

3 : τ ← PPromise
〈
A(vkA), B(ẽk, vkH , mHB)

〉
4 : if τ =⊥
5 : (σ̂, m̂)← A
6 : if (Vf(vkA, σ̂, m̂) = 1) then abort
7 : if τ 6=⊥

8 : (σ∗, s)← PSolver
〈
A

(
skA, ẽk, mAH , τ

)
,A

〉
9 : (σ̂, m̂)← A

10 : if (Vf(vkA, σ̂, m̂) = 1) ∧ (m̂ 6= mAH)) then abort
11 : parse τ := (·, ·, ·, (Y ′, ·), ·)
12 : if Vf(vkA, σ∗, mAH) = 1 ∧ gs 6= Y ′ then abort
13 : b2 := (Vf(vkA, σ∗, mAH) = 1)
14 : b3 := (Vf(vkH , mHB, Open(τ, s)) 6= 1)
15 : return (b2 ∧ b3)

Game G3: The game G3 differs from G2 when it aborts in Line 12 instead of returning
the winning condition. This event only occurs when the adversary outputs a valid
signature for the message mAH alongside a secret s that is not a witness to the embedded
statement Y ′ in the puzzle τ . We will show that this can only happen if the adversary
breaks extractability of ΠAS. If this event does not occur, G3 does not differ from G2.
The formal description of G3 is given in Figure 8.7.
Claim 6. Let BreakExtract be the event in Line 12, where G3 aborts. Then the adversary
A was able to output a valid signature σ̂ on the message mAH , that does not allow
extracting a valid witness s for the statement Y ′. If BreakExtract happens, we can build
a reduction that breaks extractability of the adaptor signature scheme ΠAS. Therefore,
the probability of BreakExtract occurring is negligible, and it holds that Pr[G3] ≈ Pr[G2].

Proof of Claim 6. During the execution of the PSolver protocol, the randomizable
puzzle Z ′ and therefore the statement Y ′ are being rerandomized to a fresh looking
version (Z ′′, r′)← ΠRP.PRand(pp, Z ′). The randomized statement Y ′′ is then embedded
in the pre-signature σ̃AH and handed over to the adversary alongside the puzzle Z ′′.
Evidently, any valid witness y′′ to Y ′′ can be converted to a valid witness y′ of Y ′

by knowing the randomization factor r′. Hence, BreakExtract occurring must be due
to an invalid witness y′′. Based on this fact, we now give a reduction that uses A

54

8.2 Unlockability

from game G3 to break extractability of ΠAS. The reduction is given as input, a
verification key vkA, and has access to a pSign oracle that, on input, a message m
and statement Y , returns a pre-signature σ̃ on m under the verification key vkA as in
Definition 14. The pSign oracle is efficient, as it follows the PPT pre-signing algorithm
ΠAS.pSign. The reduction forwards the pSign oracle to A and runs A from G3 on input
vkA. The adversary A now first runs the PPromise protocol honestly, outputting a
valid puzzle τ in Line 3 of G3. During the PSolver execution in G3 the reduction then
parses the embedded statement from the puzzle parse (Y ′′, c′′) := Z ′′, and queries the
pSign oracle on the message mAH and statement Y ′′ to receive a valid pre-signature
σ̃AH under the verification key vkA. The reduction then sends the pre-signature σ̃AH

alongside the puzzle Z ′′ to A and completes the PSolver protocol with A. Since we
assume in Claim 6 that the event BreakExtract happens with non-negligible probability,
A eventually outputs a valid full signature σ∗ in the PSolver protocol on the message
mAH under the verification key vkA, that extracts to a witness y′′ = y′ + r′ such that
gy′ 6= Y ′. The reduction then uses σ∗ to break the extractability property of the adaptor
signature scheme ΠAS. More precisely, σ∗ is a valid signature, no other oracle than the
pSign oracle has been queried and the pre-signature and full signature do not extract
to a valid statement in the relation (Y ′, Extract(vkA, σ̃AH , σ∗, Y ′)) /∈ Rel. Furthermore,
the pSign oracle and A run in polynomial time, and by assumption of Claim 6, the
event BreakExtract happens with non-negligible probability. This reduction therefore
breaks extractability of ΠAS also with non-negligible probability. This contradicts our
assumption on the adaptor signature scheme ΠAS in Lemma 2. Hence, BreakExtract can
only occur with negligible probability, and it holds that Pr[G3] ≈ Pr[G2].

Now that we have established that any verifying signature σ̂ on the message mAH

needs to reveal a valid secret to the statement Y ′ in the puzzle τ , we will show that
there can not exist an adversary with probability larger than negligible against the final
game G3. We conclude the proof of Lemma 2 by demonstrating that any extractable
witness s from the PSolver protocol allows opening the puzzle τ and outputting a valid
signature σHB. Thus, given the stated assumptions, no adversary against the final
game G3 can exist with a probability larger than negligible.

Claim 7. If there exists a PPT adversary that wins game G3 with probability larger
than negligible, then we can build a reduction that breaks pre-signature adaptability of
the underlying adaptor signature scheme ΠAS. Hence, no PPT adversary against the
final game G3 with probability larger than negligible exists.

Proof of Claim 7. We prove Claim 7 with a reduction that uses A from game G3 to
break pre-signature adaptability of ΠAS. The reduction generates a key pair (vkA, skA),
and provides vkA and a pSign oracle to A that on input a message m and statement
Y returns a pre-signature σ̃ on m under the verification key vkA by running the PPT
algorithm ΠAS.pSign(skA, m, Y). First, A now generates a key pair for the adaptor
signature scheme (vkH , skH) and LOE scheme (ẽk, d̃k) and two arbitrary messages mHB

and mAH . The reduction then runs A on input vkA to receive τ as a valid output of the
PPromise protocol. The output τ contains a valid pre-signature σ̃HB on the message

55

8 Security Analysis

mHB under the verification key vkH with an embedded statement Y ∈ Rel, such that
pVrf (vkH , mHB, Y, σ̃HB) = 1. Additionally, τ contains the randomization factor r and
a puzzle Z ′′ as in any honest execution of PPromise.

In the PSolver protocol, the reduction then queries the pSign oracle on the statement
Y ′′ contained in the puzzle Z ′′ and the message mAH to receive a valid pre-signature
σ̃AH under the verification key vkA. The reduction sends the pre-signature σ̃AH and
the puzzle Z ′′ to A. The adversary A finally outputs a valid full signature on the
message mAH as its output of the PSolver protocol. The reduction then runs the
Extract(vkA, σ̃AH , σAH) algorithm to receive a secret s and returns (σ∗, s) as its output
of PSolver. Since we assume that A wins the game G3 with non-negligible probability
in Claim 7, σ∗ is a valid signature under the verification key vkA (b2), and the Open
algorithm does not return a valid full signature for the message mHB on input the
pre-signature σ̃HB and secret s (b3).

From Line 12 in G3 it follows that any verifying signature σ∗, output by the PSolver
protocol, also outputs a valid secret s to the statement Y ′ in τ , such that Y ′ = gs. In
the Open algorithm, the witness s is derandomized using the randomization factor r
contained in the puzzle τ to receive a witness y = y′ − r for the statement. From the
randomizable puzzle scheme (Section 2.5), it further follows that Y ′ = Y ·gr. Therefore,
given the randomization factor r, any valid witness for the embedded statement Y ′

can be derandomized to a valid witness for the original statement Y , and it holds
that Y = gy. It follows that y is a valid witness for the statement Y embedded in
the pre-signature σ̃HB and the failing validation in b3 needs to be due to the Adapt
algorithm not returning a valid signature on the message mHB.

This reduction breaks pre-signature adaptability of ΠAS with non-negligible proba-
bility since σ̃HB is a valid pre-signature on the message mHB, that cannot be adapted
to a valid full signature using a valid witness y for the embedded statement Y . The
reduction is efficient since it only uses PPT algorithms from the underlying adaptor
signature scheme ΠAS and, by assumption of Claim 7, A runs in polynomial time. We
assumed by contradiction that A wins game G3 with non-negligible probability and
showed that from this assumption we can build a reduction that breaks pre-signature
adaptability of the adaptor signature scheme ΠAS. This is a contradiction, and thus, no
adversary with a probability larger than negligible can exist against the game G3.

Using Claim 7, we can finally conclude the proof of Lemma 2. We have shown through
a series of game hops with negligible transitions that, under the stated assumptions, the
probability for any PPT adversary winning the unlockability experiment ExpUnlock A

ΠBCS
is negligibly close to the probability of winning the final game G3, and it holds that

Pr
[
ExpUnlock A

ΠBCS
= 1

]
≤ Pr[G3 = 1] + negl(λ)1 + negl(λ)2.

From the assumption that there exists a PPT adversary A that wins the original game
ExpUnlock A

ΠBCS
with non-negligible probability, it follows that A also wins G3 with non-

negligible probability. This contradicts Claim 7, and thus, no such polynomial-bound
adversary can exist. It holds that A2L+ satisfies unlockability.

56

8.3 Unforgeability

8.3 Unforgeability
Lemma 3 (Unforgeability). We assume the existence of group description parameter
gp = (G, g, q). Let Rel be a canonical hard relation with PPT sampling algorithm
GenR(1λ). Let ΠRP be a secure randomizable puzzle scheme according to Construction 1
that leverages an IND-CCA-secure LOE scheme ΠE. Let NIZK be a sound randomizable
non-interactive zero-knowledge proof system, and let ΠAS be a secure adaptor signature
scheme that achieves pre-signature correctness, extractability, unique extractability, un-
linkability, pre-verify soundness, and pre-signature adaptability. Assuming the hardness
of the OMDL, the A2L+ protocol satisfies unforgeability (c.f. Definition 23) in the
LOE model.

Figure 8.8: The first unforgeability game G0(λ).

G0(λ)
1 : L := ∅,Q := 0
2 : (ẽk, d̃k)← Setup(1λ)
3 : (vkH

1 , m1, σ1), ..., (vkH
q , mq, σq)← AOPP(·),OPS(·)(ẽk)

4 : b0 := ∃i ∈ [q] s.t. (vkH
i , ·) ∈ L ∧ (vkH

i , mi) /∈ L ∧ Vf(vkH
i , mi, σi) = 1

5 : b1 := ∀i ∈ [q], (vkH
i , mi) ∈ L ∧ Vf(vkH

i , mi, σi) = 1
6 : b2 :=

∧
i,j∈[q],i 6=j

(vkH
i , mi, σi) 6= (vkH

j , mj , σj)

7 : b3 := (Q ≤ q − 1)
8 : return b0 ∨ (b1 ∧ b2 ∧ b3)

OPP(m)
1 : (vkH , skH)← ΠAS.KGen(1λ)
2 : L := L ∪ {(vkH , m)}

3 : ⊥ ← PPromise
〈
H(d̃k, skH , m),A(vkH)

〉
OPS(vkA, m′)

1 : (σ∗, s)← PSolver
〈
A, H(d̃k, vkA, m′)

〉
2 : if σ∗ 6= ⊥ then Q := Q+ 1

Proof of Lemma 3. We prove Lemma 3 by showing through a series of game hops with
negligible transitions that ExpUnforg A

ΠBCS
can be reduced to the OM-CCA-A2L A

ΠE,q game
under the stated assumptions. Glaeser et al. [GMM+22] showed by contradiction
that any adversary winning the OM-CCA-A2L A

ΠE,q game with probability larger than

57

8 Security Analysis

negligible can also break the OMDL problem, which is believed to be computationally
hard in the LOE model. Hence, the probability of winning the ExpUnforg A

ΠBCS
must be

negligible in the LOE model, and the scheme satisfies the unforgeability notion under
the stated assumptions.

Game G0: The first game G0 is the original ExpUnforg A
ΠBCS

game in Figure 4.3. G0

simulates ExpUnforg A
ΠBCS

perfectly, and it therefore holds that Pr
[
ExpUnforg A

ΠBCS
= 1

]
=

Pr[G0 = 1]. The formal description of G0 is given in Figure 8.8.

Figure 8.9: The second unforgeability game G1(λ).

G1(λ)
1 : L := ∅,Q := 0
2 : (ẽk, d̃k)← Setup(1λ)
3 : (vkH

1 , m1, σ1), ..., (vkH
q , mq, σq)← AOPP(·),OPS(·)(ẽk)

4 : if ∃i ∈ [q] s.t. (vkH
i , ·) ∈ L ∧ (vkH

i , mi) /∈ L ∧ Vf(vkH
i , mi, σi) = 1 then abort

5 : b1 := ∀i ∈ [q], (vkH
i , mi) ∈ L ∧ Vf(vkH

i , mi, σi) = 1
6 : b2 :=

∧
i,j∈[q],i 6=j

(vkH
i , mi, σi) 6= (vkH

j , mj , σj)

7 : b3 := (Q ≤ q − 1)
8 : return (b1 ∧ b2 ∧ b3)

OPP(m)
1 : (vkH , skH)← ΠAS.KGen(1λ)
2 : L := L ∪ {(vkH , m)}

3 : ⊥ ← PPromise
〈
H(d̃k, skH , m),A(vkH)

〉
OPS(vkA, m′)

1 : (σ∗, s)← PSolver
〈
A, H(d̃k, vkA, m′)

〉
2 : if σ∗ 6= ⊥ then Q := Q+ 1

Game G1: The second game G1 differs from game G0 when it aborts in Line 4 instead
of returning the winning condition. This event occurs only when the adversary outputs
a valid signature on a message that has not been queried by any oracle, thereby
producing a valid forgery. This game hop does not differ from G0 if this event does not
occur. The formal description of G1 is given in Figure 8.9.

58

8.3 Unforgeability

Claim 8. Let BreakExtract be the event in Line 4, where G1 aborts. Then, the adversary
A found a valid signature forgery σi on a message mi that has not been queried by any
oracle. If BreakExtract happens, then we can build a reduction that can break extractability
of the underlying adaptor signature scheme ΠAS. Therefore, BreakExtract can occur only
with negligible probability. Since Pr[G1 ∧ ¬BreakExtract] = Pr[G0 ∧ ¬BreakExtract] and the
event BreakExtract occurring is negligible, G0 and G1 need to be indistinguishable. It holds
that Pr[G1] ≈ Pr[G0].

Proof of Claim 8. We prove Claim 8 with a reduction that uses A from game G1 to
break extractability of the underlying adaptor signature scheme ΠAS. The reduction
receives as input a number of challenge verification keys vki and a pSign oracle that,
on input, a message m and statement Y , returns a pre-signature σ̃ on m under the
verification key vki as in Definition 14. The pSign oracle is efficient, as it follows the
PPT pre-signing algorithm ΠAS.pSign. The reduction forwards the pSign oracle to A
by answering a polynomially bounded number of queries. Furthermore, it simulates G1,
with the respective oracles OPP and OPS perfectly from the view of A. The adversary
A now queries the OPP oracle in G1 up to q times on messages of its choice. During
each execution of the PPromise protocol within the OPP oracle, instead of computing
the pre-signatures itself, the reduction queries the pSign oracle to obtain valid pre-
signatures on the respective messages under the verification keys vki. Additionally,
A queries the OPS oracle on q − 1 messages of its choice to receive valid signatures
under its own secret key skA. Since we assume in Claim 8 that the event BreakExtract
occurs with non-negligible probability, A eventually outputs a valid signature σi for
a message mi under one of the verification keys vki for which the OPP and therefore
also the pSign oracle has not been queried. Finally, the reduction can use σi to break
extractability of the adaptor signature scheme ΠAS, since the signature σi is valid
under the verification key vki and neither was a Sign oracle provided nor has the pSign
oracle been queried on the message mi. In Claim 8, we assumed that A is a PPT
adversary and that BreakExtract happens with non-negligible probability. Hence, the
presented reduction is efficient and breaks extractability with non-negligible probability.
This contradicts our assumption about the adaptor signature scheme ΠAS in Lemma 3.
Thus, the event BreakExtract can only occur with negligible probability, and it holds
that Pr[G1] ≈ Pr[G0].

Game G2: The game G2 differs from G1 in Lines 5 and 7, where instead of requiring
that all (vki, mi, σ1) tuples are different, we require that all q outputs of the Extract
algorithm are different. Effectively, this means all witnesses are different. The formal
description of G2 is given in Figure 8.10.
Claim 9. Assuming the puzzle promise protocol samples the witnesses randomly from a
uniform distribution. If the Extract algorithm of any two executions Extract(vki, σ̃i, σi, Yi)
outputs the same witness, while the message signature tuples (vki, mi, σi) are different,
then we can build a reduction that breaks unique extractability of the underlying adaptor
signature scheme ΠAS with probability larger than negligible. Hence, the two games
must be indistinguishable Pr[G2] ≈ Pr[G1].

59

8 Security Analysis

Figure 8.10: The third unforgeability game G2(λ).

G2(λ)
1 : L := ∅,S := ∅,Q := 0
2 : (ẽk, d̃k)← Setup(1λ)
3 : (vkH

1 , m1, σ1, σ̃1, Y1), ..., (vkH
q , mq, σq, σ̃q, Yq)← AOPP(·),OPS(·)(ẽk)

4 : if ∃i ∈ [q] s.t. (vkH
i , ·) ∈ L ∧ (vkH

i , mi) /∈ L ∧ Vf(vkH
i , mi, σi) = 1 then abort

5 : ∀i ∈ [q],S := S ∪ {Extract(vki, σ̃i, σi, Yi)}
6 : b1 := ∀i ∈ [q], (vkH

i , mi) ∈ L ∧ Vf(vkH
i , mi, σi) = 1

7 : b2 := ∀yi, yj ∈ S, i 6= j : yi 6= yj

8 : b3 := (Q ≤ q − 1)
9 : return (b1 ∧ b2 ∧ b3)

OPP(m)
1 : (vkH , skH)← ΠAS.KGen(1λ)
2 : L := L ∪ {(vkH , m)}

3 : ⊥ ← PPromise
〈
H(d̃k, skH , m),A(vkH)

〉
OPS(vkA, m′)

1 : (σ∗, s)← PSolver
〈
A, H(d̃k, vkA, m′)

〉
2 : if σ∗ 6= ⊥ then Q := Q+ 1

Proof of Claim 9. We prove Claim 9 with a reduction that uses A from game G2 to
create an adaptor signature scheme with malleable pre-signatures, similar to Figure 5.1
by Gerhart et al. [GSST24], to break unique extractability of the underlying adaptor
signature scheme ΠAS. The reduction receives as inputs the verification keys vki and a
pSign oracle that, on input, a message m and statement Y , returns a pre-signature σ̃
on m under the verification key vki as in Definition 14. The pSign oracle is efficient, as
it follows the PPT pre-signing algorithm ΠAS.pSign. During each PPromise protocol
execution in the OPP oracle, the reduction queries the pSign oracle with the verification
key vki instead of computing the pre-signature itself. The reduction initially creates
the key pair (ẽk, d̃k), and runs A on input ẽk. The adversary A now queries the OPP
oracle q times to receive q valid pre-signatures σ̃q from the pSign oracle with embedded
statements Yq ∈ Rel on the messages mq of its choice. Furthermore, A queries the OPP
oracle q−1 times to receive valid secrets sq−1 for the embedded challenges in σ̃q. On the
i-th query A then runs the Adapt algorithm of ΠAS on input the pre-signature σ̃i and
secret si, and outputs a valid signature σi1 on the message mi using the pre-signature
σ̃i.

60

8.3 Unforgeability

We assume by contradiction in Claim 9 that A outputs two distinct valid signatures
(σi1, σi2) that extract to the same witness si with non-negligible probability. Since
in the PPromise protocol, the embedded secrets si get sampled uniformly at random
from a large distribution, the probability that any two statements Yi in two different
pre-signatures σ̃i are the same is negligible. Therefore, when two signatures extract
to the same witness, they both need to be an adapted signature using the same
pre-signature. Hence, in the reduction, A runs the ΠAS.Adapt algorithm again on the
i-th pre-signature σ̃i to receive another signature σi2, similar to the adaptor signature
scheme with malleable pre-signatures in Figure 5.1. The reduction finally outputs the
pre-signature σ̃i, message mi, and the two signatures σi1 and σi2, to break the unique
extractability property of ΠAS. More precisely, running the ΠAS.Extract algorithm on
both signatures σi1 and σi2 will result in the same witness, and the embedded statement
is in the relation Yi ∈ Rel, since it has been honestly sampled in the PPromise protocol.
The reduction is efficient asA runs in polynomial time and by assumption of Claim 9 has
a non-negligible success probability. Hence, this reduction breaks unique extractability
of ΠAS also with non-negligible probability, which contradicts our assumption on the
adaptor signature scheme ΠAS in Lemma 3. Evidently, any pre-signature σ̃i with an
embedded witness Yi must be a commitment to a single full signature σi, and the
probability that two signatures differ while they extract to the same witness is the
same as the probability of two randomly sampled witnesses being identical. In the
PPromise protocol in G2, the witnesses get sampled uniformly at random from a large
distribution. Hence, the probability of two witnesses being identical is negligible. It
holds that G1 and G2 are indistinguishable.

Game G3: G3 differs from game G2 when it aborts in Line 5. This event only occurs
when the adversary outputs a valid signature that does not extract to a valid witness
for the statement Yi. This game hop does not differ from G2 if this event does not
occur. The formal description of G3 is given in Figure 8.11.

Claim 10. Let BreakExtract be the event in Line 5, where G3 aborts. Then, the ad-
versary A found a valid signature that does not allow extracting a valid witness for
the embedded statement Yi. If BreakExtract happens, then we can build a reduction that
can break extractability of the underlying adaptor signature scheme ΠAS. Therefore,
BreakExtract can occur only with negligible probability. Since Pr[G3 ∧ ¬BreakExtract] =
Pr[G2 ∧ ¬BreakExtract] and the event BreakExtract occurring is negligible, G2 and G3 need
to be indistinguishable. It holds that Pr[G3] ≈ Pr[G2].

Proof of Claim 10. We prove Claim 10 with a reduction that uses A from game G3 to
break extractability of the underlying adaptor signature scheme ΠAS. The reduction
receives as inputs the verification keys vki and a pSign oracle that, on input, a message
m and statement Y , returns a pre-signature σ̃ on m under the verification key vki

as in Definition 14. The pSign oracle is efficient, as it follows the PPT pre-signing
algorithm ΠAS.pSign. The reduction initially creates the key pair (ẽk, d̃k), and runs
A on input ẽk. The adversary now interacts with the OPP oracle as in G3 to receive

61

8 Security Analysis

Figure 8.11: The fourth unforgeability game G3(λ).

G3(λ)
1 : L := ∅,S := ∅,Q := 0
2 : (ẽk, d̃k)← Setup(1λ)
3 : (vkH

1 , m1, σ1, σ̃1, Y1), ..., (vkH
q , mq, σq, σ̃q, Yq)← AOPP(·),OPS(·)(ẽk)

4 : if ∃i ∈ [q] s.t. (vkH
i , ·) ∈ L ∧ (vkH

i , mi) /∈ L ∧ Vf(vkH
i , mi, σi) = 1 then abort

5 : if ∃i ∈ [q] s.t. Vf(vkH
i , mi, σi) = 1 ∧ gExtract(vki,σ̃i,σi,Yi) 6= Yi then abort

6 : ∀i ∈ [q],S := S ∪ {Extract(vki, σ̃i, σi, Yi)}
7 : b1 := ∀i ∈ [q], (vkH

i , mi) ∈ L ∧ Vf(vkH
i , mi, σi) = 1

8 : b2 := ∀yi, yj ∈ S, i 6= j : yi 6= yj

9 : b3 := (Q ≤ q − 1)
10 : return (b1 ∧ b2 ∧ b3)

OPP(m)
1 : (vkH , skH)← ΠAS.KGen(1λ)
2 : L := L ∪ {(vkH , m)}

3 : ⊥ ← PPromise
〈
H(d̃k, skH , m),A(vkH)

〉
OPS(vkA, m′)

1 : (σ∗, s)← PSolver
〈
A, H(d̃k, vkA, m′)

〉
2 : if σ∗ 6= ⊥ then Q := Q+ 1

valid pre-signatures σ̃i on messages mi of its choice. The reduction computes the
pre-signatures during the PPromise protocol by calling the pSign oracle instead of
computing them itself. The adversary then queries the OPS oracle to run the PSolver
protocol and receive a valid witness si for the statement embedded in the pre-signature
σ̃i. With the knowledge of si, A runs the ΠAS.Adapt algorithm to receive valid full
signatures σi on the messages mi. Since we assume in Claim 10, that BreakExtract
happens with non-negligible probability, A eventually outputs a valid full signature
σi on a message mi under the verification key vki that does not allow extracting a
valid witness to the embedded statement Yi using the corresponding pre-signature σ̃i,
such that Yi 6= gExtract(vki,σ̃i,σi,Yi). This contradicts the extractability property of the
adaptor signature scheme ΠAS, since σi is a valid signature, no Sign oracle has been
provided, and no valid witness can be extracted. We assumed by contradiction that
A runs in polynomial time and BreakExtract happens with non-negligible probability.
Thus, the given reduction is an efficient algorithm that also breaks extractability of
ΠAS with non-negligible probability, violating the assumption in Lemma 3. Hence,

62

8.3 Unforgeability

the event BreakExctract can only occur with negligible probability, we conclude that
Pr[G3] ≈ Pr[G2].

We will now give a reduction from game G3 to the OM-CCA-A2L A
ΠE,q experiment

(Figure 4.4), which, as Glaeser et al. [GMM+22] showed, can be further reduced to the
OMDL problem, given that the encryption scheme ΠE is IND-CCA-secure.

Claim 11. If there exists an efficient adversary that wins game G3 with probability
larger than negligible, then we can build a reduction that breaks OM-CCA-A2L A

ΠE,q.

Proof of Claim 11. The reduction is given (c1, h1), . . . , (ci, hi) as in OM-CCA-A2L A
ΠE,q.

It first generates the keys (ẽk, d̃k)← Setup(1λ) and (vkH
i , skH

i) and starts A on input
ẽk. For each OPP query, it uses a different challenge hi, to generate the pre-signatures.
Note that in G3, by definition, not all embedded witnesses are different. We do
however assume that in the PPromise algorithm the statement witness pairs (Y, y)←
Rel.GenR(1λ) are sampled uniformly at random from a large distribution and thus
are unique with overwhelming probability. When A now queries the OPS oracle, the
reduction returns the adapted full signature as the output of OA2L

dk,ΠE,ΠAS
run on input

(vkA, mi, hi, ci, σ̃i). The OPS and OA2L
dk,ΠE,ΠAS

oracles return ⊥ in exactly the same cases,
consequently both A and the reduction return at most q−1 non-⊥ oracle queries. Since
we assume by contradiction that A wins G3 with non-negligible probability, A outputs
q valid tuples Vf(vkH

i , mi, σi) = 1 according to the winning condition b1. The reduction
now computes ri ← ΠAS.Extract(vkH

i , σ̃i, σi, Yi) ∀i ∈ [q] and outputs those values to
win the OM-CCA-A2L A

ΠE,q experiment. By the winning condition b2 of G3, all ri must
be different when A completes successfully. Hence, it holds that gri = hi ∀i ∈ [q]. This
breaks OM-CCA-A2L-security of the underlying IND-CCA-secure encryption scheme
ΠE, and thus, no such efficient adversary can exist with non-negligible probability.

We are now ready to conclude our proof of Lemma 3. Through a series of game
hops, we showed that the probability of winning the unlockability game ExpUnlock A

ΠBCS
is negligibly close to the probability of winning the OM-CCA-A2L A

ΠE,q experiment, and
it holds that

Pr
[
ExpUnlock A

ΠBCS
= 1

]
≤ Pr

[
OM-CCA-A2L A

ΠE,q = 1
]

+ negl(λ)1 + negl(λ)2 + negl(λ)3.

We assumed by contradiction that an efficient adversary A winning the ExpUnforg A
ΠBCS

game with non-negligible probability exists. This implies that A also wins the
OM-CCA-A2L A

ΠE,q experiment with non-negligible probability. Glaeser et al. [GMM+22]
showed that, assuming the encryption scheme is IND-CCA secure, the OM-CCA-A2L A

ΠE,q

experiment can be reduced to the OMDL problem in the LOE model. Therefore, the
existence of an efficient adversary A that breaks the OM-CCA-A2L-security of the
underlying encryption scheme ΠE contradicts the hardness assumption of the OMDL.
Hence, under the stated assumptions, no efficient adversary against ExpUnforg A

ΠBCS
exists, and A2L+ satisfies unforgeability.

63

8 Security Analysis

We can now conclude our proof of Theorem 1. In the preceding sections, we have
proven that the A2L+ protocol satisfies the three security properties: unforgeability,
selective-failure blindness, and unlockability. Each property was proven using game-
based techniques established in the respective lemmas. Together Lemma 1, Lemma 2,
and Lemma 3 provide a complete security analysis of the A2L+ scheme, thereby
proving the overall security as stated in Theorem 1. Thus, A2L+ is a secure blind
conditional signature scheme under the stated assumptions.

64

9 Conclusion
This thesis investigated the security of blind conditional signatures, the cryptographic
core of coin-mixing protocols. We identified and addressed a previously known security
flaw that rendered the A2L+ scheme insecure with respect to the unforgeability security
notion. Additionally, we reviewed the current security definitions and introduced
selective-failure blindness, which ensures blindness in case of aborts. Following this,
we presented an improved construction of the A2L+ scheme that ensures blindness
even in case the receiver and the Hub collude and demonstrated its security through
game-based proofs.

The main findings of this thesis are that the identified security flaw can be mitigated
by choosing an adaptor signature scheme that satisfies the stronger security definitions
according to Gerhart et al. [GSST24]. Most notably an adaptor signature scheme
additionally must satisfy unique extractability to fulfill the unforgeability security
property. Our proposed definition of selective failure blindness and improved scheme
contribute to the development of more robust coin-mixing protocols, ensuring higher
security and privacy in blockchain transactions.

While our work provides significant improvements, future research needs to address
some limitations. One limitation is the required coin-locking mechanism, for which
Glaeser et al. [GMM+22] suggested a payment channel setup. Payment channels, on
the other hand, are not available on all blockchains. Future research could therefore
explore various coin-locking mechanisms.

Furthermore, blind conditional signatures could potentially lay the groundwork for
a cross-chain coin-mixing protocol. All protocol phases do not need to be run on a
single blockchain. The PPromise and PSolver algorithms could be executed on different
chains. Hence, future work could construct a cross-chain protocol and analyze its
security based on the BCS security properties presented in this work.

On a more foundational level, this thesis showed that the presented security properties
are built upon a set of assumptions that do not hold in all circumstances. For instance,
Glaeser et al. [GMM+22] assumed that there is no collusion between the Hub and
another party. However, there might be cases in which we need a scheme that is
secure in case this assumption does not hold. We showed that we can construct a
scheme that is secure against a collusion between the receiver Bob and the Hub by
adding the randomizable NIZK in our improved construction. The security properties
do however not cover any collusion. Future research could therefore investigate more
robust security frameworks that address challenges posed by colluding adversaries. This
involves developing models that remain secure in a multi-adversary setting, thereby
enhancing security in more complex adversarial environments.

In conclusion, this thesis has made substantial contributions to the field of coin-

65

9 Conclusion

mixing by addressing a critical vulnerability in the A2L+ protocol by Glaeser et al.
[GMM+22]. Our findings highlight the importance of rigorous security definitions and
robust constructions, paving the way for future advancements in the field.

66

Bibliography
[ADKL19] Ananth, Prabhanjan ; Deshpande, Apoorvaa ; Kalai, Yael T. ; Lysyan-

skaya, Anna: Fully Homomorphic NIZK and NIWI Proofs. In: Hofheinz,
Dennis (Hrsg.) ; Rosen, Alon (Hrsg.): TCC 2019: 17th Theory of Cryp-
tography Conference, Part II Bd. 11892. Nuremberg, Germany : Springer,
Cham, Switzerland, Dezember 1–5, 2019 (Lecture Notes in Computer
Science), S. 356–385

[AEE+21] Aumayr, Lukas ; Ersoy, Oguzhan ; Erwig, Andreas ; Faust, Sebastian
; Hostáková, Kristina ; Maffei, Matteo ; Moreno-Sanchez, Pedro ;
Riahi, Siavash: Generalized Channels from Limited Blockchain Scripts
and Adaptor Signatures. In: Tibouchi, Mehdi (Hrsg.) ; Wang, Huaxiong
(Hrsg.): Advances in Cryptology – ASIACRYPT 2021, Part II Bd. 13091.
Singapore : Springer, Cham, Switzerland, Dezember 6–10, 2021 (Lecture
Notes in Computer Science), S. 635–664

[BCC+09] Belenkiy, Mira ; Camenisch, Jan ; Chase, Melissa ; Kohlweiss,
Markulf ; Lysyanskaya, Anna ; Shacham, Hovav: Randomizable
Proofs and Delegatable Anonymous Credentials. In: Halevi, Shai (Hrsg.):
Advances in Cryptology – CRYPTO 2009 Bd. 5677. Santa Barbara, CA,
USA : Springer, Berlin, Heidelberg, Germany, August 16–20, 2009 (Lecture
Notes in Computer Science), S. 108–125

[BFP21] Bauer, Balthazar ; Fuchsbauer, Georg ; Plouviez, Antoine: The
One-More Discrete Logarithm Assumption in the Generic Group Model.
In: Tibouchi, Mehdi (Hrsg.) ; Wang, Huaxiong (Hrsg.): Advances in
Cryptology – ASIACRYPT 2021, Part IV Bd. 13093. Singapore : Springer,
Cham, Switzerland, Dezember 6–10, 2021 (Lecture Notes in Computer
Science), S. 587–617

[BNPS03] Bellare, Mihir ; Namprempre, Chanathip ; Pointcheval, David ;
Semanko, Michael: The One-More-RSA-Inversion Problems and the
Security of Chaum’s Blind Signature Scheme. In: Journal of Cryptol-
ogy 16 (2003), Juni, Nr. 3, S. 185–215. http://dx.doi.org/10.1007/
s00145-002-0120-1. – DOI 10.1007/s00145–002–0120–1

[CL15] Castagnos, Guilhem ; Laguillaumie, Fabien: Linearly Homomorphic
Encryption from DDH. In: Nyberg, Kaisa (Hrsg.): Topics in Cryptology
– CT-RSA 2015 Bd. 9048. San Francisco, CA, USA : Springer, Cham,

67

http://dx.doi.org/10.1007/s00145-002-0120-1
http://dx.doi.org/10.1007/s00145-002-0120-1

Bibliography

Switzerland, April 20–24, 2015 (Lecture Notes in Computer Science), S.
487–505

[CNs07] Camenisch, Jan ; Neven, Gregory ; shelat, abhi: Simulatable Adaptive
Oblivious Transfer. In: Naor, Moni (Hrsg.): Advances in Cryptology –
EUROCRYPT 2007 Bd. 4515. Barcelona, Spain : Springer, Berlin, Heidel-
berg, Germany, Mai 20–24, 2007 (Lecture Notes in Computer Science), S.
573–590

[DMP88] De Santis, Alfredo ; Micali, Silvio ; Persiano, Giuseppe: Non-
Interactive Zero-Knowledge Proof Systems. In: Pomerance, Carl (Hrsg.):
Advances in Cryptology – CRYPTO’87 Bd. 293. Santa Barbara, CA, USA :
Springer, Berlin, Heidelberg, Germany, August 16–20, 1988 (Lecture Notes
in Computer Science), S. 52–72

[DOY22] Dai, Wei ; Okamoto, Tatsuaki ; Yamamoto, Go: Stronger Security and
Generic Constructions for Adaptor Signatures. Cryptology ePrint Archive,
Report 2022/1687, 2022. – https://eprint.iacr.org/2022/1687

[DS21] Deuber, Dominic ; Schröder, Dominique: CoinJoin in the Wild - An
Empirical Analysis in Dash. In: Bertino, Elisa (Hrsg.) ; Shulman,
Haya (Hrsg.) ; Waidner, Michael (Hrsg.): ESORICS 2021: 26th Euro-
pean Symposium on Research in Computer Security, Part II Bd. 12973.
Darmstadt, Germany : Springer, Cham, Switzerland, Oktober 4–8, 2021
(Lecture Notes in Computer Science), S. 461–480

[FS09] Fischlin, Marc ; Schröder, Dominique: Security of Blind Signatures
under Aborts. In: Jarecki, Stanislaw (Hrsg.) ; Tsudik, Gene (Hrsg.):
PKC 2009: 12th International Conference on Theory and Practice of
Public Key Cryptography Bd. 5443. Irvine, CA, USA : Springer, Berlin,
Heidelberg, Germany, März 18–20, 2009 (Lecture Notes in Computer
Science), S. 297–316

[GM84] Goldwasser, Shafi ; Micali, Silvio: Probabilistic Encryption. In:
Journal of Computer and System Sciences 28 (1984), Nr. 2, S. 270–299

[GMM+22] Glaeser, Noemi ; Maffei, Matteo ; Malavolta, Giulio ; Moreno-
Sanchez, Pedro ; Tairi, Erkan ; Thyagarajan, Sri Aravinda K.: Foun-
dations of Coin Mixing Services. In: Yin, Heng (Hrsg.) ; Stavrou,
Angelos (Hrsg.) ; Cremers, Cas (Hrsg.) ; Shi, Elaine (Hrsg.): ACM CCS
2022: 29th Conference on Computer and Communications Security. Los
Angeles, CA, USA : ACM Press, November 7–11, 2022, S. 1259–1273

[GMR88] Goldwasser, Shafi ; Micali, Silvio ; Rivest, Ronald L.: A Digital
Signature Scheme Secure Against Adaptive Chosen-message Attacks. In:
SIAM Journal on Computing 17 (1988), April, Nr. 2, S. 281–308

68

https://eprint.iacr.org/2022/1687

Bibliography

[Gro04] Groth, Jens: Rerandomizable and Replayable Adaptive Chosen Cipher-
text Attack Secure Cryptosystems. In: [TCC 204], S. 152–170

[GS08] Groth, Jens ; Sahai, Amit: Efficient Non-interactive Proof Systems for
Bilinear Groups. In: Smart, Nigel P. (Hrsg.): Advances in Cryptology
– EUROCRYPT 2008 Bd. 4965. Istanbul, Turkey : Springer, Berlin,
Heidelberg, Germany, April 13–17, 2008 (Lecture Notes in Computer
Science), S. 415–432

[GSST24] Gerhart, Paul ; Schröder, Dominique ; Soni, Pratik ; Thyagarajan,
Sri A.: Foundations of Adaptor Signatures. In: Joye, Marc (Hrsg.) ;
Leander, Gregor (Hrsg.): Advances in Cryptology – EUROCRYPT 2024.
Cham : Springer Nature Switzerland, 2024. – ISBN 978–3–031–58723–8,
S. 161–189

[HAB+17] Heilman, Ethan ; Alshenibr, Leen ; Baldimtsi, Foteini ; Scafuro,
Alessandra ; Goldberg, Sharon: TumbleBit: An Untrusted Bitcoin-
Compatible Anonymous Payment Hub. In: ISOC Network and Distributed
System Security Symposium – NDSS 2017. San Diego, CA, USA : The
Internet Society, Februar 26 – März 1, 2017

[KL14] Katz, Jonathan ; Lindell, Yehuda: Introduction to Modern Cryptography.
Third. Chapman and Hall, CRC Press, 2014. – ISBN 978–0815354369

[Ped92] Pedersen, Torben P.: Non-Interactive and Information-Theoretic Secure
Verifiable Secret Sharing. In: Feigenbaum, Joan (Hrsg.): Advances in
Cryptology – CRYPTO’91 Bd. 576. Santa Barbara, CA, USA : Springer,
Berlin, Heidelberg, Germany, August 11–15, 1992 (Lecture Notes in Com-
puter Science), S. 129–140

[Poe17] Poelstra, Andrew: Scriptless scripts. https://download.wpsoftware.
net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/
slides.pdf. Version: 2017. – Accessed: 2022-07-01

[PSS19] Pertsev, Alexey ; Semenov, Roman ; Storm, Roman: Tornado
Cash Privacy Solution Version 1.4. https://berkeley-defi.github.
io/assets/material/Tornado%20Cash%20Whitepaper.pdf, 2019. – Ac-
cessed: 2024-05-15

[RMK14] Ruffing, Tim ; Moreno-Sanchez, Pedro ; Kate, Aniket: CoinShuf-
fle: Practical Decentralized Coin Mixing for Bitcoin. In: Kutylowski,
Miroslaw (Hrsg.) ; Vaidya, Jaideep (Hrsg.): ESORICS 2014: 19th Eu-
ropean Symposium on Research in Computer Security, Part II Bd. 8713.
Wroclaw, Poland : Springer, Cham, Switzerland, September 7–11, 2014
(Lecture Notes in Computer Science), S. 345–364

69

https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf
https://berkeley-defi.github.io/assets/material/Tornado%20Cash%20Whitepaper.pdf
https://berkeley-defi.github.io/assets/material/Tornado%20Cash%20Whitepaper.pdf

Bibliography

[Sch91] Schnorr, Claus-Peter: Efficient Signature Generation by Smart Cards.
In: Journal of Cryptology 4 (1991), Januar, Nr. 3, S. 161–174. http:
//dx.doi.org/10.1007/BF00196725. – DOI 10.1007/BF00196725

[TCC 204] Naor, Moni (Hrsg.): TCC 2004: 1st Theory of Cryptography Conference.
Bd. 2951. Cambridge, MA, USA : Springer, Berlin, Heidelberg, Germany,
Februar 19–21, 2004 (Lecture Notes in Computer Science)

[TMM21] Tairi, Erkan ; Moreno-Sanchez, Pedro ; Maffei, Matteo: A2L:
Anonymous Atomic Locks for Scalability in Payment Channel Hubs. In:
2021 IEEE Symposium on Security and Privacy. San Francisco, CA, USA
: IEEE Computer Society Press, Mai 24–27, 2021, S. 1834–1851

70

http://dx.doi.org/10.1007/BF00196725
http://dx.doi.org/10.1007/BF00196725

	Introduction
	Preliminaries
	Hard Relations
	One-More Discrete Logarithm Problem
	Linear-Only Homomorphic Encryption
	Non-Interactive Zero-Knowledge Proof
	Randomizable Puzzle
	Commitment Scheme
	Digital Signatures
	Adaptor Signatures
	Definition and Functionality
	Security Properties of Adaptor Signatures

	Coin-Mixing
	General Functionality
	Synchronization Puzzles
	A2L+
	System Assumptions
	Achieving Unlinkability
	Registration Protocol

	Definition and Current Security Notions of Blind Conditional Signatures
	Definition
	Blindness
	Unlockability
	Unforgeability
	One-More CCA-A2L Security

	Problems with Current Security Notions
	Problems with Current Blindness Definition
	Blindness under Aborts
	Blindness Between Sender and Receiving Parties
	Blindness Between Sending Parties and Receiver

	Problems with Current Unforgeability Definition
	Limitations of Payment Channel Setup

	Enhanced Security Definitions
	Selective-Failure Blindness

	Blind Conditional Signatures Construction
	Puzzle Promise Protocol
	Puzzle Solver Protocol
	Open Algorithm

	Security Analysis
	Selective-Failure Blindness
	Unlockability
	Unforgeability

	Conclusion
	Bibliography

